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Abstract

Recommender systems are faced with new challenges
that are beyond traditional techniques. For example,
most traditional techniques are based on similarity or
overlap among existing data, however, there may not
exist sufficient historical records for some new users
to predict their preference, or users can hold diverse
interest, but the similarity based methods may probably
over-narrow it.

To address the above challenges, we develop a princi-
pled approach called contextual combinatorial bandit in
which a learning algorithm can dynamically identify di-
verse items that interest a new user. Specifically, each
item is represented as a feature vector, and each user is
represented as an unknown preference vector. On each
of n rounds, the bandit algorithm sequentially selects
a set of items according to the item-selection strategy
that balances exploration and exploitation, and collects
the user feedback on these selected items. A reward
function is further designed to measure the quality (e.g.
relevance or diversity) of the selected set based on ob-
served feedback, and the goal of the algorithm is to max-
imize the total rewards of n rounds. The reward func-
tion only needs to satisfy two mild assumptions that is
general enough to accommodate a large class of nonlin-
ear functions. To solve this bandit problem, we provide
algorithm that achieves Õ(

√
n) regret after playing n

rounds. Experiments conducted on real-wold movie rec-
ommendation dataset demonstrate that our approach
can effectively address the above challenges and hence
improve the performance of recommendation task.
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1 Introduction

The multi-armed bandit (MAB) problem has been ex-
tensively studied in statistics and gained much popu-
larity in the community of machine learning recently.
It can be formulated as a sequential decision-making
problem, where on each of n rounds a decision maker is
presented with the choice of taking one of m arms (or ac-
tions), each having an unknown distribution of reward.
The goal of the decision maker is to maximize the total
expected rewards over the course of n rounds. When
each arm is represented by a feature vector that can be
observed by the decision maker, the problem is known
as contextual bandit problem, which is recently used to
develop recommender systems that adapt to user feed-
back.

User feedback is one kind of increasingly important
source for online applications (e.g. Netflix project,
Google news, Amazon) whose domains expand rapidly.
Lots of new users don’t have sufficient historical records,
and hence are beyond the traditional recommendation
technologies that anticipate a user’s interest according
to his/her past activities. Take movie recommendation
for example, in contextual bandit setting, given a new
user, we can repeatedly provide the user with one
movie and collect his/her rating in multiple rounds.
The algorithm helps decide which movie to recommend
in the next round given the ratings in the previous
rounds, i.e. whether we should try some new movies
(exploration) or we should stick on the movies that the
user has given high ratings so far (exploitation).

But in real-world scenario, recommender systems actu-
ally provide each user with a set of movies, rather than
individual one. In this setting, not one simple arm but
a set of arms (called a super arm) are played together
on each round. The reward of a set of movies should not
simply be the sum of ratings of each individual movie
in this set. For example, we need a metric to qualify
the diversity of the recommendation set to avoid re-
dundant or over-specified recommendation lists. In this
case, one can probably design a diversity promoting set
function as the reward function of a super arm. The
above problem can be described as a diversity promot-



ing exploration/exploitation problem.

Motivated by the above challenges, we develop a prin-
cipled approach called contextual combinatorial bandit
to help predict user preference in recommender system.
Specifically, movies are represented as feature vectors
that can be regarded as contextual arms, and meanwhile
users are represented as unknown preference variables,
such that for users without enough historical records, a
learning algorithm explores and exploits his/her prefer-
ence by sequentially selecting sets of movies according
to a diversity promoting reward function.

Note that the contextual combinatorial bandit is a gen-
eral framework, and except for the above example set-
ting, it can also be used in other applications by defining
different reward functions, as long as the functions sat-
isfy two mild assumptions that we will discuss in section
3.

In summary, the main contributions of this paper can
be listed as follows: (i) We propose a general framework
called contextual combinatorial bandit that can be
used to address real-world recommendation challenges,
i.e., user interest is unknown and meanwhile diverse.
(ii) We develop C2UCB, an efficient algorithm for
contextual combinatorial bandit, for which we show a
Õ(
√
n) regret bound after playing n rounds1. (iii) We

apply the contextual combinatorial bandit approach on
online diversified movie recommendation application.
As evaluation, we conduct experiments on well-known
movie recommendation dataset. The experiment results
demonstrate that our approach significantly improves
the performance of recommendation task.

2 Related Work

Most traditional recommendation techniques focus on
learning user preference according to users’ historical
records [12, 23, 6]. However, recent studies show that
historical records may not well represent user interest
[24, 25]. On one hand, some users may not provide
sufficient records, in which case it is crucial to predict
user preference dynamically according to user feedback
[16, 17]. On the other hand, users can hold diverse
interest, and thus recommendation techniques should
not only aim at increasing relevance, but also consider
improving diversity of recommended results [25, 22].

To recommend items to users without sufficient histor-
ical records, several studies formulate this task as a
multi-armed bandit problem [14, 15, 5]. Multi-armed

1Õ(·) is variant of big O notation that ignores logarithmic
factors.

bandit is a well-studied topic in the fields of statistics
and machine learning (cf. [4, 2]). In traditional non-
contextual bandit problem, the learner cannot access
the features of arms, and the rewards of different arms
are independent. In this setting, the upper confidence
bound (UCB) algorithm is proven to be theoretically
optimal [13, 3]. However, without using arm features,
the performance of UCB algorithm is quite limited in
many practical scenarios, especially when there are a
large number of arms [14]. On the other hand, contex-
tual bandit problem considers the case where the learner
can observe the features of arms. Consequently, the
learner can use these observations to infer the rewards
of other unseen arms and improve the performance over
time. Notably, Auer et al. [3] considered the contextual
bandit problem and developed LinRel algorithm that
achieved an Õ(

√
n) regret bound after playing n rounds.

Later, Li et al.[14] proposed LinUCB algorithm, which
improves the practical performance of LinRel algorithm
while enjoys similar regret bound [8]. They applied Lin-
UCB algorithm on a personalized news recommendation
task and demonstrated good performance [14].

In the settings of both non-contextual and contextual
bandits, the learner is allowed to play one single arm
on each round, i.e., recommend one item each time.
However, recommending a single item on each round
may not satisfy a user’s diverse interest. Recently,
several work generalized the classical non-contextual
bandits to combinatorial bandits [10, 11, 7], where the
learner can play a set of arms, which is termed as a
super arm, on each round. However, as generalizations
of non-contextual bandits, these work did not use arm
features. Hence, their performance can be suboptimal
in many recommendation tasks, particularly when the
number of arms is large. Though our method inherits
some concepts (e.g. super arm) from non-contextual
combinatorial bandit, both problem formulation and
regret analysis are quite different, which are actually
our main contributions.

Yue and Guestrin [26] proposed a linear submodular
bandit approach for diversified retrieval. Their ap-
proach placed a strong restriction on user behavior. In
particular, they assumed that user can only scan the
items one by one in top-down fashion. In contrast, our
framework has no limitation on user behavior. In addi-
tion, their framework is specifically designed for a cer-
tain type of submodular reward functions, while our ap-
proach allows a much larger class of reward functions.



3 Contextual Combinatorial Bandit

In this section, we formulate the contextual combinato-
rial bandit problem. Let n be the number of rounds
and m be the number of arms. Let St ⊆ 2[m] be
the set of all possible subsets of arms on round t.
We call each set of arms St ∈ St a super arm. On
each round t ∈ [n], a learner observes m feature vec-
tors {xt(1), . . . ,xt(m)} ⊆ Rd corresponding to m arms.
Then, the learner is asked to choose one super arm
St ∈ St to play. Once a super arm St ∈ St is played,
the learner observes the scores of arms in {rt(i)}i∈St

and receives a reward Rt(St). For each arm i ∈ [m], its
score rt(i) is assumed to be

(3.1) rt(i) = θT∗ xt(i) + εt(i),

where θ∗ is a parameter unknown to the learner and the
noise εt(i) is a zero-mean random variable. On the other
hand, the reward Rt(St) measures the quality of the
super arm St and its definition will be specified later.
The goal of the learner is to maximize the expected

cumulative reward E
[∑

t∈[n]Rt(St)
]

over n rounds.

The reward Rt(St) on round t is an application de-
pendent function which measures the quality of rec-
ommended set of arms St ⊆ [m]. The reward can
simply be the sum of the scores of arms in St, i.e.
Rt(St) =

∑
i∈St

rt(i). However, our framework also al-
lows other more complicated non-linear rewards. For
example, in addition to the sum of scores of arms, the
reward Rt(St) may also consider the “diversity” of arms
in St, which can be defined as a non-linear function of
features of arms.

Specifically, we consider the case where the expected re-
ward E [Rt(St)] is a function of three variables: super
arm St, feature vectors of arms Xt , {xt(i)}i∈[m] and

expected scores r∗t , {θT∗ xt(i)}i∈[m] associated with the
arms. Formally, we denote the expected reward of play-
ing St as E [Rt(St)] = fr∗t ,Xt

(St). By choosing different
types of expected reward fr,X(·), our framework covers
both linear and non-linear rewards. Finally, in order to
carry out our analysis, the expected reward fr,X(·) is
required to satisfy the following assumptions.

Monotonicity The expected reward fr,X(S) is mono-
tone non-decreasing with respect to the score vector
r. Formally, for any set of feature vectors of arms
X and super arm S, if r(i) ≤ r′(i) for all i ∈ [m],
we have fr,X(S) ≤ fr′,X(S).

Lipschitz continuity The expected reward fr,X(S)
is Lipschitz continuous with respect to the score
vector r restricted on the arms in S. In particular,
there exists a universal constant C > 0 such

that, for any two score vectors r and r′, we have

|fr,X(S)− fr′,X(S)|≤ C
√∑

i∈S [r(i)− r′(i)]2.

Our framework does not require the player to have
direct knowledge on how the reward function fr,X(S)
is defined. Alternatively, we assume that the player has
access to an oracle OS(r,X), which takes the expected
scores r and arms X as input, and returns the solution
of the maximization problem arg maxS∈S fr,X(S). Since
the maximization problems of many reward functions
fr,X(·) of practical interest are NP-hard, our framework
allows the oracle to produce an approximate solution
to the problem. More precisely, an oracle OS(r,X) is
called α-approximation oracle for some α ≤ 1, if given
input r and X, the oracle always returns a super arm
S = OS(r,X) ∈ S satisfying fr,X(S) ≥ αoptr,X, where
optr,X = maxS∈S fr,X(S) is the optimal value of the
reward function. Under this setting, when α = 1, the
α-approximation oracle is exact and always produces
the optimal solution.

Recall that the goal of the learner is to maximize its
cumulative reward without knowing θ∗. Clearly, with
the knowledge of θ∗, the optimal strategy is to choose
St = arg maxSt∈St frt,Xt

(St) on round t. Hence, it is
natural to evaluate a learner relative to this optimal
strategy and the difference of the learner’s total reward
and the total reward of the optimal strategy is called
regret. However, if a learner only has accesses to an α-
approximation oracle for some α < 1, such evaluation
would be unfair. Hence, in this paper, we use the notion
of α-regret which compares the learner’s strategy with
α-fraction of the optimal rewards on round t. Formally,
the α-regret on round t can be written as

(3.2) Regαt = αoptrt,Xt
− frt,Xt

(St),

and we are interested in designing an algorithm whose
total α-regret

∑T
t=1 Regαt is as small as possible.

4 Algorithm and α-Regret Analysis

In this section, we present contextual combinatorial up-
per confidence bound algorithm (C2UCB). C2UCB is a
general and efficient algorithm for the contextual com-
binatorial bandit problem. The basic idea of C2UCB is
to maintain a confidence set for the true parameter θ∗.
For each round t, the confidence set is constructed from
feature vectors X1, . . . ,Xt−1 and observed scores of se-
lected arms {r1(i)}i∈S1 , . . . , {rt−1(i)}i∈St−1 from previ-
ous rounds. As we will see later (Theorem 4.2), our
construction of the confidence sets ensures that the
true parameter θ∗ lies in the confidence set with high
probability. Using this confidence set of parameter θ∗



and feature vectors of arms Xt, the algorithm can ef-
ficiently compute an upper confidence bound for each
score r̂t = {r̂t(1), . . . , r̂t(m)}. The upper confidence
bounds r̂t and feature vectors of arms Xt are given to
the oracle as input. Then, the algorithm plays the super
arm returned by the oracle and uses the observed scores
to adjust the confidence sets. The pseudocode of the
algorithm is listed in Algorithm 1. The algorithm has
time complexity O(n(d3 + md + h)), where h denotes
the time complexity of the oracle.

Algorithm 1 C2UCB

1: input: λ, α1, . . . , αn
2: Initialize V0 ← λId×d,b0 ← 0d
3: for t← 1, . . . , n do
4: θ̂t ← V−1t−1bt−1
5: for i ∈ 1, . . . ,m do
6: r̄t(i)← θ̂Tt xt(i)

7: r̂t(i)← r̄t(i) + αt

√
xt(i)TV−1t xt(i)

8: end for
9: St ← OSt(r̂t,Xt)

10: Play super arm St and observe {rt(i)}i∈St

11: Vt ← Vt−1 +
∑
i∈St

xt(i)xt(i)
T

12: bt ← bt−1 +
∑
i∈St

rt(i)xt(i)
13: end for

We now state our main theoretical result, a bound
on the α-regret of Algorithm 1 when run with an α-
approximation oracle. To carry out our analysis, we
will need to assume that the l2-norms of parameter θ∗
and feature vectors of arms Xt are bounded. Using
this assumption together with the monotonicity and
Lipschitz continuity properties of the expected reward
function fr,X(·), the following theorem states that the
α-regret of Algorithm 1 is at most O(d log(n)

√
n +√

nd log(n/δ)), or Õ(
√
n) if one ignores logarithmic

factors and regards the dimensionality of the parameter
d as a constant.

Theorem 4.1. (α-regret of the Algorithm 1). Without
loss of generality, assume that ‖θ∗‖2 ≤ S, ‖xt(i)‖2 ≤ 1
and rt(i) ∈ [0, 1] for all t ≥ 0 and i ∈ [m]. Given

0 < δ < 1, set αt =

√
d log

(
1+tm/λ

δ

)
+ λ1/2S. Then,

with probability at least 1 − δ, the total α-regret of
C2UCB algorithm satisfies

n∑
t=1

Regαt ≤ C
√

64nd log(1 + nm/dλ)·(√
λS +

√
2 log(1/δ) + d log(1 + nm/(λd))

)
,

for any n ≥ 0.

Note that the requirements ‖xt(i)‖2 ≤ 1 and rt(i) ∈
[0, 1] can be satisfied through proper rescaling on xt(i)
and θ∗.

4.1 Proof of Theorem 4.1 We begin with restating
a concentration result from Abbasi-Yadkori et al., [1].
This result states that the true parameter θ∗ lies within
an ellipsoid centered at θ̂t simultaneously for all t ∈ [n]
with high probability.

Theorem 4.2. ([1, Theorem 2]) Suppose the observed
scores rt(i) are bounded in [0, 1]. Assume that ‖θ∗‖2 ≤
S and ‖xt(i)‖2 ≤ 1 for all t ≥ 0 and i ∈ [m]. Define
Vt = V +

∑n
t=1

∑
i∈St

xt(i)xt(i)
T and set V = λI.

Then, with probability at least 1− δ, for all round t ≥ 0,
the estimate θ̂t satisfies 2

∥∥∥θ̂t − θ∗∥∥∥
Vt−1

≤

√
d log

(
1 + tm/λ

δ

)
+ λ1/2S.

The proof of Theorem 4.2 is based on the theory of
self-normalized processes. For an introduction to this
theory, we refer interested readers to [21, 9].

Next, using Theorem 4.2, we show that with high
probability, the upper confidence bounds of scores r̂t
also do not deviate far from the true value of scores r∗t
for each round t ∈ [n].

Lemma 4.1. If we set αt =

√
d log

(
1+tm/λ

δ

)
+ λ1/2S,

with probability at least 1− δ, we have

0 ≤ r̂t(i)− r∗t (i) ≤ 2αt ‖xt(i)‖V−1
t−1

,

holds simultaneously for any round t ≥ 0 and any arm
i ∈ [m].

Proof. By Theorem 4.2, the random event

∥∥∥θ̂t − θ∗∥∥∥
Vt−1

≤

√
d log

(
1 + tm/λ

δ

)
+ λ1/2S

holds for all t ∈ [n] simultaneously with probability at
least 1− δ.

Now assume the above random event happens, by the

2We denote ‖a‖M ,
√
aTMa, where a is a vector and M is a

positive definite matrix.



definition of r̂t(i), we have

|r̂t(i)− r∗t (i)|

=
∣∣∣θ̂Tt xt(i) + αt ‖xt(i)‖V−1

t−1
− θT∗ xt(i)

∣∣∣
≤
∣∣∣(θ̂t − θ∗)Txt(i)

∣∣∣+ αt ‖xt(i)‖V−1
t−1

≤
∥∥∥θ̂t − θ∗∥∥∥

Vt−1

‖xt(i)‖V−1
t−1

+ αt ‖xt(i)‖V−1
t−1

≤2αt ‖xt(i)‖V−1
t−1

.

On the other hand, we have

r̂t(i)− r∗(i)

= θ̂Tt xt(i) + αt ‖xt(i)‖V−1
t−1
− θT∗ xt(i)

= (θ̂t − θ∗)Txt(i) + αt ‖xt(i)‖V−1
t−1

≥ −
∥∥∥θ̂t − θ∗∥∥∥

Vt−1

‖xt(i)‖V−1
t−1

+ αt ‖xt(i)‖V−1
t−1

≥ − αt ‖xt(i)‖V−1
t−1

+ αt ‖xt(i)‖V−1
t−1

= 0.

To prove our main result Theorem 4.1, we need the
following technical lemma.

Lemma 4.2. Let V ∈ Rd×d be a positive definite ma-
trix. For all t = 1, 2, . . ., let St be a subset of [m]
of size less than or equal to k and define Vn = V +∑n
t=1

∑
i∈St

xt(i)xt(i)
T .

Then, if λ ≥ k and ‖xt(i)‖2 ≤ 1 for all t and i, we have

n∑
t=1

∑
i∈St

‖xt(i)‖2V−1
t−1
≤ 2 log det Vn − log det V

≤ 2d log((trace(V) + nk)/d)

− 2 log det V.

Proof. We have

det(Vn)

= det

(
Vn−1 +

∑
i∈Sn

xn(i)xn(i)T

)

= det(Vn−1) det

(
I +

∑
i∈Sn

(V
−1/2
n−1 xn(i))(V

−1/2
n−1 xn(i))T

)

= det(Vn−1) det

(
I +

∑
i∈Sn

‖xn(i)‖2V−1
t−1

)

= det(V)

n∏
t=1

(
1 +

∑
i∈St

‖xt(i)‖2V−1
t−1

)
.

Now, using the fact that u ≤ 2 log(1 + u) for any u ∈
[0, 1] and that ‖xt(i)‖2V−1

t−1
≤ ‖xt(i)‖2 /λmin(Vt−1) ≤

1/λ ≤ 1/k, we obtain

n∑
t=1

∑
i∈St

‖xt(i)‖2V−1
t−1
≤ 2

n∑
t=1

log

(
1 +

∑
i∈St

‖xt(i)‖2V−1
t−1

)
= 2 log det Vn − 2 log det V.

We remain to bound log det Vn. Since ‖xn(i)‖2 ≤ 1 and
|Si|≤ k for all i ∈ [n], the trace of Vn can be bounded
by trace(Vn) ≤ trace(V)+nk. Apply the Determinant-
Trace Inequality [1, Lemma 10], we have

log det(Vn) ≤ d log((trace(V) + nk)/d).

Based on Lemma 4.1, Lemma 4.2 and the two assump-
tions on the expected reward, we are now ready to prove
our main theorem.

Proof. (Theorem 4.1) By Lemma 4.1, we have r̂t(i) ≥
r∗t (i) holds simultaneously for all t ∈ [n] and i ∈ [m]
with probability at least 1 − δ. Now, assume that
this random event holds and apply the monotonicity
property of the expected reward, for any super arm
S ∈ St, we have fr̂t,Xt

(S) ≥ fr∗t ,Xt
(S).

Let St ∈ St be the super arm returned by the oracle
St = OSt(r̂t,Xt) on round t. We now show that
fr̂t,Xt

(St) ≥ αoptr∗t ,Xt
. To see this, we denote S∗t =

arg maxS∈St fr∗t ,Xt
(S) as the maximizer of fr∗t ,Xt

(·) and

Ŝt as the optimal solution of arg maxS∈St fr̂t,Xt
(S).

Then, we have

fr̂t,Xt
(St) ≥ αoptr̂t,Xt

= αfr̂t,Xt
(Ŝt) ≥ αfr̂t,Xt

(S∗t )

≥ αfr∗t ,Xt
(S∗t ) = αoptr∗t ,Xt

,

where we have used the definition of α-approximation
oracle and the optimality of Ŝt.

Now, we can bound α-regret at round t as follows,

Regαt = αoptr∗t ,Xt
− fr∗t ,Xt

(St)

≤ fr̂t,Xt
(St)− fr∗t ,Xt(St)

≤ C
√∑
i∈St

(r̂t(i)− r∗t (i))2

≤ C
√∑
i∈St

4α2
t ‖xt(i)‖

2
V−1

t−1
,

where the second inequality follows from the Lipschitz
continuity property of the expected reward fr,X(·).



Therefore, with probability at least 1− δ, for all n ≥ 0,

n∑
t=1

Regαt ≤

√√√√n

n∑
t=1

(Regat )2

≤C

√√√√8n

n∑
t=1

∑
i∈St

4α2
t ‖xt(i)‖

2
V−1

t−1

≤Cαn
√

32n

√√√√ n∑
t=1

∑
i∈St

‖xt(i)‖2V−1
t−1

≤Cαn
√

32n
√

2d log(λ+ nm/d)− 2d log λ

=C
√

64nd log(1 + nm/dλ)·(√
d log ((1 + nm/λ)/δ) +

√
λS
)
,

where the last inequality follows from Lemma 4.2, the
fact that |St|≤ m for all t and that V = λI.

5 Application: Online Diversified Movie Set
Recommendation

In this section, we consider an application with sub-
stantial practical interest: diversified movie recommen-
dation. In this application, the recommender system
recommends sets of movies, rather than individual ones.
In addition, the recommended movies should be diversi-
fied such that the coverage of information that interests
users is maximized. Furthermore, the recommender sys-
tem need to use the user’s feedback to improve its per-
formance for future recommendations.

This application can be naturally formulated as a con-
textual combinatorial problem as follows. Suppose, on
each round t, there are m available movies and each
movie is represented as a feature vector xt(i) ∈ Rd. We
can view the m movies as m arms and regard the fea-
ture vectors of movies as the feature vectors associated
with arms. Then, the parameter θ∗ ∈ Rd corresponds
to the user’s (unknown) preference and the scores rt(i)
are the ratings given by the user. On each round t, the
system need to recommend a set of exactly k movies.
This cardinality constraint is equivalent to assign the
set of allowed super arms St = {S|S ∈ 2[m] and |S|= k}
to be the set of all subsets of size k for all t ≥ 0.

Next, we define the expected reward fr,X(S) of a super
arm S and construct an α-approximation oracle that
associates to the expected reward. The definition of
reward of super arm S should reflect both relevance and
diversity of the set of movies in the super arm. In this
paper, we consider the following definition of reward

which is proposed recently by Qin and Zhu [22],

(5.3) fr,X(S) =
∑
i∈S

r(i) + λh(S,X),

where h(S,X) = 1
2 |S|log(2πe)+ 1

2 log det(X(S)TX(S)+
σ2I) is called entropy regularizer since it quantifies the
posterior uncertainty of ratings of movies in the set S.
Here, the matrix X(S) ∈ Rd×|S| denotes a submatrix
of X that consists of columns indexed by S and σ2

is a smoothing parameter. This definition of entropy
regularizer is derived as the differential entropy of
ratings based on the Probabilistic Matrix Factorization
(PMF) model. The derivation is omitted here due
to space constraint and we refer interested readers to
[22] for details. Finally, the parameter λ of Eq. (5.3)
is a regularization constant which trades-off between
relevance and diversity.

As shown in [22], this definition of reward has several
desirable properties. First, the value of entropy regular-
izer h(S,X) is maximized if the feature vectors of movies
in S are orthogonal (most dissimlar) and is minimized
when the feature vectors are linearly dependent (most
similar). This property captures the intuition of the di-
versity of a set of feature vectors. Second, the function
fr,X(·) is submodular and monotone for σ2 ≥ 0.0586.
Consequently, there exists efficient approximation algo-
rithms with rigorous guarantees to solve the combinato-
rial maximization problem of finding the super arm with
the highest expected reward, which can be formulated
as arg max|S|=k fr,X(S).

In particular, a simple greedy algorithm is guaranteed
to find the super arm with reward larger than (1 −
1/e)OPT , where OPT is the reward of the best super
arm [20, 22]. By definition, this algorithm can be
employed as a valid (1 − 1/e)-approximation oracle in
the contextual combinatorial bandit framework. The
detailed implementation of the greedy algorithm as an

(1 − 1/e)-approximation oracle Odiv
k (r,X) is shown in

Algorithm 2. The time complexity of Algorithm 2 is
O(k4), which is acceptable in most applications where
k is a small constant ranging from 5 to 20.

Now, we can plug this oracle Odiv
k (r,X) in C2UCB

to construct an algorithm for the online diversified
movie recommendation application. This can be done
by simply changing Line 9 of Algorithm 1 to St ←
Odiv
k (r̂t,Xt). We denote the resulting algorithm as

C2UCBdiv, whose total time complexity is O(n(d3 +
md+ k4)).

To rigorously establish the theoretical guarantees for

C2UCBdiv algorithm, we remain to verify whether the



expected reward fr,X(·) defined in Eq (5.3) satisfies
the monotonicity and Lipschitz continuity properties,
which are required by Theorem 4.1. The monotonicity
property is straightforward since fr,X(·) depends on r
only through

∑
i∈S r(i), which is clearly monotone with

respect to r. On the other hand, for any set S of size k
and any collection of feature vectors X, we have

|fr,X(S)− fr′,X(S)| =

∣∣∣∣∣∑
i∈S

r(i)− r′(i)

∣∣∣∣∣
≤
√
k

√∑
i∈S

(r(i)− r′(i))2.

Hence, the expected reward fr,X(·) satisfies the Lips-
chitz continuity property with Lipschitz constant C =√
k. Therefore, by Theorem 4.1, we can immediate ob-

tain the (1− 1/e)-regret bound of recommending diver-

sified movie sets using C2UCBdivas

k
√

64nd log(1 + nm/dλ)(√
λS +

√
2 log(1/δ) + d log(1 + nm/(λd))

)
.

Algorithm 2 Odiv
k (r,X): a (1 − 1/e)-approximation

oracle for diversified movie set recommendation

1: input: scores r ∈ Rm, feature vectors X ∈ Rd×m
2: S ← ∅, C← σ−2

3: for j = 1 to k do
4: for i ∈ [m]\S do
5: ΣiS ← x(i)TX(S)

6: δ
(R)
i ← ri

7: δ
(g)
i ← 1

2 log(2πe(σ2 + ΣiSCΣTiS))
8: end for
9: i∗ ← arg max

i∈[m]\S
δ
(R)
i + λδ

(g)
i

10: S ← S ∪ {i∗}
11: C← (X(S)TX(S) + σ2I)−1

12: end for
13: return S

6 Experiments

6.1 Experiment Setup We conduct experiments
on the MovieLens dataset, which is a public dataset
consisting 1,000,029 ratings for 3900 movies by 6040
users of online movie recommendation service [19].
Each element of the dataset is represented by a tuple
ti,j = (ui, vj , ri,j), where ui denotes userID, vj denotes
movieID, and ri,j which is an integer score between 1
and 5 denotes the rating of user i for movie j (higher
score indicates higher preference).

We split the dataset into training and test set as follows.
We construct the test set by randomly selecting 300
users such that each selected user has at least 100
ratings. The remaining 5740 users and their ratings
belong to the training set. Then, we apply a rank-d
probabilistic matrix factorization (PMF) algorithm on
the training data to learn the feature vectors of movies
(each feature vector is d-dimensional). These feature
vectors will be used later by the bandit algorithms as
the feature vectors of arms.

Baselines. We compare our combinatorial contextual
bandit algorithm with the following baselines.

k-LinUCB algorithm. LinUCB [14] is a contextual
bandit algorithm which recommends exactly one arm
at each time. To recommend a set of k movies, we
repeat LinUCB algorithm k times on each round. By
sequentially removing recommended arms, we ensure
the k arms returned by LinUCB are distinct on each
round. Finally, we highlight that the resulting bandit
algorithm can be regarded as a combinatorial contextual
bandit with linear expected reward function

fr,X(S) =
∑
i∈S

r(i).

Therefore, the major difference between k-LinUCB al-

gorithm and our C2UCBdivalgorithm, which uses a re-
ward function defined in Eq. (5.3), lies in that our algo-
rithm optimizes the diversity of arms in set St.

Warm-start diversified movie recommendation.
We denote this baseline as “warm-start” for short. For
each user u in test set, we randomly select η ratings
to train an user preference vector using PMF model.
We call the parameter η as warm-start offset. With
the estimated preference vector, one can repeatedly
recommend sets of diverse recommendation results by
maximizing the reward function 5.3. Note that this
method cannot dynamically adapts to user’s feedback,
and thus each round is independent with the others.

Metric. We use precision to measure the quality of
recommended movie sets over n rounds. Specifically,
for each user u in the test test, we define the set of
“preferred movies” Lu as the set of movies which user u
assigned a rating of 4 or 5. Intuitively, a good movie set
recommendation algorithm should recommend movie
sets which cover a large fraction of preferred movies.
Formally, on round t, suppose the recommendation
algorithm recommends a set of movies St. The precision
pt,u of user u on round t is defined as

pt,u =
|St ∩ Lu|
|St|

.



Then, the average precision of Pt of all test users up to
round t is given by

Pt =
1

t|U |
∑
u∈U

t∑
i=1

pi,u.

Note that we do not aim at predicting the ratings of
movies, but to provide more satisfying recommendation
lists. Hence, precision is a more appropriate metric
rather than the root mean square error (RMSE). Ac-
tually, our algorithm (as well as baselines) essentially
used an l2-regularized linear regression method to pre-
dict movie ratings based on existing observations. This
is equivalent to the rating prediction methods used by
many matrix factorization algorithms, which are shown
to have low RMSEs [18]. Moreover, we cannot use re-
gret as a metric either, because the definitions of regrets
vary greatly for different bandit algorithms.

6.2 Experiment Results We consider recommend-
ing different number of movies to each user on each
round, i.e., the size of super arm k takes values in
{5, 10, 15, 20}. For each k, we set the exploration pa-
rameter αt = 1.0. The parameters of entropy regular-
izer are set to be λ = 0.5 and σ = 1.0.

For the warm-start baseline that allows an offline-
estimated user preference, we consider two cases where
η takes different values. In one case that we denote as
“warm-start 2k”, η = k× 2 which indicates the method
can access ratings of two rounds. In the other case
that we denote as “warm-start all”, η equals the total
amount of observations, which indeed corresponds to
the best solution, i.e., all observations are used to train
user preference.

The results are shown in Figure 1 and Table 1, where

our approach is denoted as C2UCBdiv. We can see
that, in all cases, the “warm-start 2k” baseline out-
performs bandit algorithms on earlier rounds, which is
reasonable since the “warm-start 2k” baseline is pro-
vided warm-start observations to learn the user pref-
erence. But when more user feedbacks are available,
bandit algorithms improve performance by dynamically
adapting to user feedbacks. Near the end of 10 rounds,

C2UCBdiv can achieve a result that is comparable to
“warm-start all”. Compared to k-LinUCB, our method

C2UCBdiv finds a better match between recommended
movies and user interest (i.e., the movies liked by each
given user), and thus improves the overall performance.

Furthermore, when k is larger, C2UCBdiv algorithm ob-
tains larger performance gain over k-LinUCB algorithm.
The experiment results indicate that our method helps
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Figure 1: Experiment results comparing

C2UCBdiv with k-LinUCB, warm-start 2t and
warm-start all on different choices of k.

t = 5 t = 10 warm-start
KL CC KL CC η = 2k η = all

k = 5 0.785 0.810 0.831 0.861 0.763 0.884

k = 10 0.779 0.806 0.814 0.851 0.745 0.862

k = 15 0.770 0.793 0.803 0.836 0.720 0.841

k = 20 0.762 0.784 0.791 0.822 0.692 0.824

Table 1: Precision values of competing algorithms. CC:

C2UCBdivalgorithm. KL: k-LinUCB algorithm.

uncover users’ diverse interest by using a non-linear di-
versity promoting reward function.

7 Conclusion

We presented a general framework called contextual
combinatorial bandit that accommodates combinatorial
nature of contextual arms. We developed an efficient
algorithm C2UCB for contextual combinatorial bandit
and provide a rigorously regret analysis. We further
applied this framework on online diversified movie rec-
ommendation task, and developed a specific algorithm

C2UCBdivfor this application. Experiments on public
MovieLens dataset demonstrate that our approach helps
explore and exploit users’ diverse preference, and hence
improves the performance of recommendation task.
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