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Abstract
Tensor completion from incomplete observations is a problem of significant prac-
tical interest. However, it is unlikely that there exists an efficient algorithm with
provable guarantee to recover a general tensor from a limited number of obser-
vations. In this paper, we study the recovery algorithm for pairwise interaction
tensors, which has recently gained considerable attention for modeling multiple
attribute data due to its simplicity and effectiveness. Specifically, in the absence
of noise, we show that one can exactly recover a pairwise interaction tensor by
solving a constrained convex program which minimizes the weighted sum of nu-
clear norms of matrices from O(nr log2(n)) observations. For the noisy cases,
we also prove error bounds for a constrained convex program for recovering the
tensors. Our experiments on the synthetic dataset demonstrate that the recovery
performance of our algorithm agrees well with the theory. In addition, we apply
our algorithm on a temporal collaborative filtering task and obtain state-of-the-art
results.

1 Introduction

Many tasks of recommender systems can be formulated as recovering an unknown tensor (multi-
way array) from a few observations of its entries [17, 26, 25, 21]. Recently, convex optimization
algorithms for recovering a matrix, which is a special case of tensor, have been extensively studied
[7, 22, 6]. Moreover, there are several theoretical developments that guarantee exact recovery of
most low-rank matrices from partial observations using nuclear norm minimization [8, 5]. These
results seem to suggest a promising direction to solve the general problem of tensor recovery.

However, there are inevitable obstacles to generalize the techniques for matrix completion to tensor
recovery, since a number of fundamental computational problems of matrix is NP-hard in their
tensorial analogues [10]. For instance, Håstad showed that it is NP-hard to compute the rank of a
given tensor [9]; Hillar and Lim proved the NP-hardness to decompose a given tensor into sum of
rank-one tensors even if a tensor is fully observed [10]. The existing evidence suggests that it is
very unlikely that there exists an efficient exact recovery algorithm for general tensors with missing
entries. Therefore, it is natural to ask whether it is possible to identify a useful class of tensors for
which we can devise an exact recovery algorithm.

In this paper, we focus on pairwise interaction tensors, which have recently demonstrated strong
performance in several recommendation applications, e.g. tag recommendation [19] and sequential
data analysis [18]. Pairwise interaction tensors are a special class of general tensors, which directly
model the pairwise interactions between different attributes. Take movie recommendation as an ex-
ample, to model a user’s ratings for movies varying over time, a pairwise interaction tensor assumes
that each rating is determined by three factors: the user’s inherent preference on the movie, the
movie’s trending popularity and the user’s varying mood over time. Formally, pairwise interaction
tensor assumes that each entry Tijk of a tensor T of size n1 × n2 × n3 is given by following

Tijk =
〈
u

(a)
i ,v

(a)
j

〉
+
〈
u

(b)
j ,v

(b)
k

〉
+
〈
u

(c)
k ,v

(c)
i

〉
, for all (i, j, k) ∈ [n1]× [n2]× [n3], (1)

1



where {u(a)
i }i∈[n1], {v

(a)
i }j∈[n2] are r1 dimensional vectors, {u(b)

j }j∈[n2], {v
(b)
k }k∈[n3] are r2 di-

mensional vectors and {u(c)
k }k∈[n3], {v

(c)
i }i∈[n1] are r3 dimensional vectors, respectively. 1

The existing recovery algorithms for pairwise interaction tensor use local optimization methods,
which do not guarantee the recovery performance [18, 19]. In this paper, we design efficient re-
covery algorithms for pairwise interaction tensors with rigorous guarantee. More specifically, in the
absence of noise, we show that one can exactly recover a pairwise interaction tensor by solving a
constrained convex program which minimizes the weighted sum of nuclear norms of matrices from
O(nr log2(n)) observations, where n = max{n1, n2, n3} and r = max{r1, r2, r3}. For noisy
cases, we also prove error bounds for a constrained convex program for recovering the tensors.

In the proof of our main results, we reformulated the recovery problem as a constrained matrix
completion problem with a special observation operator. Previously, Gross et al. [8] have showed
that the nuclear norm heuristic can exactly recover low rank matrix from a sufficient number of
observations of an orthogonal observation operator. We note that the orthogonality is critical to their
argument. However, the observation operator, in our case, turns out to be non-orthogonal, which
becomes a major challenge in our proof. In order to deal with the non-orthogonal operator, we have
substantially extended their technique in our proof. We believe that our technique can be generalized
to handle other matrix completion problem with non-orthogonal observation operators.

Moreover, we extend existing singular value thresholding method to develop a simple and scalable
algorithm for solving the recovery problem in both exact and noisy cases. Our experiments on the
synthetic dataset demonstrate that the recovery performance of our algorithm agrees well with the
theory. Finally, we apply our algorithm on a temporal collaborative filtering task and obtain state-
of-the-art results.

2 Recovering pairwise interaction tensors

In this section, we first introduce the matrix formulation of pairwise interaction tensors and specify
the recovery problem. Then we discuss the sufficient conditions on pairwise interaction tensors
for which an exact recovery would be possible. After that we formulate the convex program for
solving the recovery problem and present our theoretical results on the sample bounds for achieving
an exact recovery. In addition, we also show a quadratically constrained convex program is stable
for the recovery from noisy observations.

A matrix formulation of pairwise interaction tensors. The original formulation of pairwise inter-
action tensors by Rendle et al. [19] is given by Eq. (1), in which each entry of a tensor is the sum of
inner products of feature vectors. We can reformulate Eq. (1) more concisely using matrix notations.
In particular, we can rewrite Eq. (1) as follows

Tijk = Aij +Bjk + Cki, for all (i, j, k) ∈ [n1]× [n2]× [n3], (2)

where we set Aij =
〈
u

(a)
i ,v

(a)
j

〉
, Bjk =

〈
u

(b)
j ,v

(b)
k

〉
, and Cki =

〈
u

(c)
k ,v

(c)
i

〉
for all (i, j, k).

Clearly, matrices A,B and C are rank r1, r2 and r3 matrices, respectively.

We call tensor T ∈ Rn1×n2×n3 a pairwise interaction tensor, which is denoted as T =
Pair(A,B,C), if T obeys Eq. (2). We note that this concise definition is equivalent to the original
one. In the rest of this paper, we will exclusively use the matrix formulation of pairwise interaction
tensors.

Recovery problem. Suppose we have partial observations of a pairwise interaction tensor T =
Pair(A,B,C). We write Ω ⊆ [n1] × [n2] × [n3] to be the set of indices of m observed entries. In
this work, we shall assume Ω is sampled uniformly from the collection of all sets of sizem. Our goal
is to recover matrices A,B,C and therefore the entire tensor T from exact or noisy observations of
{Tijk}(ijk)∈Ω.

Before we proceed to the recovery algorithm, we first discuss when the recovery is possible.

Recoverability: uniqueness. The original recovery problem for pairwise interaction tensors is ill-
posed due to a uniqueness issue. In fact, for any pairwise interaction tensor T = Pair(A,B,C),

1For simplicity, we only consider three-way tensors in this paper.
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we can construct infinitely manly different sets of matrices A′,B′,C′ such that Pair(A,B,C) =
Pair(A′,B′,C′). For example, we have Tijk = Aij + Bjk + Cki = (Aij + δai) + Bjk + (Cki +
(1 − δ)ai), where δ 6= 0 can be any non-zero constant and a is an arbitrary non-zero vector of
size n1. Now, we can construct A′,B′ and C′ by setting A′ij = Aij + δai, B

′
jk = Bjk and

C ′ki = Cki + (1− δ)ai. It is clear that T = Pair(A′,B′,C′).

This ambiguity prevents us to recover A,B,C even if T is fully observed, since it is entirely
possible to recover A′,B′,C′ instead of A,B,C based on the observations. In order to avoid
this obstacle, we construct a set of constraints such that, given any pairwise interaction ten-
sor Pair(A,B,C), there exists unique matrices A′,B′,C′ satisfying the constraints and obeys
Pair(A,B,C) = Pair(A′,B′,C′). Formally, we prove the following proposition.
Proposition 1. For any pairwise interaction tensor T = Pair(A,B,C), there exists unique A′ ∈
SA,B

′ ∈ SB ,C′ ∈ SC such that Pair(A,B,C) = Pair(A′,B′,C′) where we define SB = {M ∈
Rn2×n3 : 1TM = 0T },SC = {M ∈ Rn3×n1 : 1TM = 0T } and SA = {M ∈ Rn1×n2 : 1TM =(

1
n2

1TM1
)
1T }.

We point out that there is a natural connection between the uniqueness issue and the “bias” compo-
nents, which is a quantity of much attention in the field of recommender system [13]. Due to lack
of space, we defer the detailed discussion on this connection and the proof of Proposition 1 to the
supplementary material.

Recoverability: incoherence. It is easy to see that recovering a pairwise tensor T = Pair(A,0,0)
is equivalent to recover the matrix A from a subset of its entries. Therefore, the recovery problem of
pairwise interaction tensors subsumes matrix completion problem as a special case. Previous studies
have confirmed that the incoherence condition is an essential requirement on the matrix in order to
guarantee a successful recovery of matrices. This condition can be stated as follows.

Let M = UΣVT be the singular value decomposition of a rank r matrix M. We call matrix M is
(µ0, µ1)-incoherent if M satisfies:

A0. For all i ∈ [n1] and j ∈ [n2], we have n1

r

∑
k∈[r] U

2
ik ≤ µ0 and n2

r

∑
k∈[r] V

2
jk ≤ µ0.

A1. The maximum entry of UVT is bounded by µ1

√
r/(n1n2) in absolute value.

It is well known the recovery is possible only if the matrix is (µ0, µ1)-incoherent for bounded µ0, µ1

(i.e, µ0, µ1 is poly-logarithmic with respect to n). Since the matrix completion problem is reducible
to the recovery problem for pairwise interaction tensors, our theoretical result will inherit the inco-
herence assumptions on matrices A,B,C.

Exact recovery in the absence of noise. We first consider the scenario where the observations are
exact. Specifically, suppose we are given m observations {Tijk}(ijk)∈Ω, where Ω is sampled from
uniformly at random from [n1]× [n2]× [n3]. We propose to recover matrices A,B,C and therefore
tensor T = Pair(A,B,C) using the following convex program,

minimize
X∈SA,Y∈SB ,Z∈SC

√
n3 ‖X‖∗ +

√
n1 ‖Y‖∗ +

√
n2 ‖Z‖∗ (3)

subject to Xij + Yjk + Zki = Tijk, (i, j, k) ∈ Ω,

where ‖M‖∗ denotes the nuclear norm of matrix M, which is the sum of singular values of M, and
SA, SB , SC is defined in Proposition 1.

We show that, under the incoherence conditions, the above nuclear norm minimization method suc-
cessful recovers a pairwise interaction tensor T when the number of observationsm isO(nr log2 n)
with high probability.
Theorem 1. Let T ∈ Rn1×n2×n3 be a pairwise interaction tensor T = Pair(A,B,C) and A ∈
SA,B ∈ SB ,C ∈ SC as defined in Proposition 1. Without loss of generality assume that 9 ≤ n1 ≤
n2 ≤ n3. Suppose we observed m entries of T with the locations sampled uniformly at random
from [n1] × [n2] × [n3] and also suppose that each of A,B,C is (µ0, µ1)-incoherent. Then, there
exists a universal constant C, such that if

m > C max{µ2
1, µ0}n3rβ log2(6n3),

where r = max{rank(A), rank(B), rank(C)} and β > 2 is a parameter, the minimizing solution
X,Y,Z for program Eq. (3) is unique and satisfies X = A,Y = B,Z = C with probability at
least 1− log(6n3)6n2−β

3 − 3n2−β
3 .
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Stable recovery in the presence of noise. Now, we move to the case where the observations are
perturbed by noise with bounded energy. In particular, our noisy model assumes that we observe

T̂ijk = Tijk + σijk, for all (i, j, k) ∈ Ω, (4)

where σijk is a noise term, which maybe deterministic or stochastic. We assume σ has bounded
energy on Ω and specifically that ‖PΩ(σ)‖F ≤ ε1 for some ε1 > 0, where PΩ(·) denotes the
restriction on Ω. Under this assumption on the observations, we derive the error bound of the
following quadratically-constrained convex program, which recover T from the noisy observations.

minimize
X∈SA,Y∈SB ,Z∈SC

√
n3 ‖X‖∗ +

√
n1 ‖Y‖∗ +

√
n2 ‖Z‖∗ (5)

subject to
∥∥∥PΩ(Pair(X,Y,Z))− PΩ(T̂ )

∥∥∥
F
≤ ε2.

Theorem 2. Let T = Pair(A,B,C) and A ∈ SA,B ∈ SB ,C ∈ SC . Let Ω be the set of
observations as described in Theorem 1. Suppose we observe T̂ijk for (i, j, k) ∈ Ω as defined in
Eq. (4) and also assume that ‖PΩ(σ)‖F ≤ ε1 holds. Denote the reconstruction error of the optimal
solution X,Y,Z of convex program Eq. (5) as E = Pair(X,Y,Z)−T . Also assume that ε1 ≤ ε2.
Then, we have

‖E‖∗ ≤ 5

√
2rn1n2

2

8β log(n1)
(ε1 + ε2),

with probability at least 1− log(6n3)6n2−β
3 − 3n2−β

3 .

The proof of Theorem 1 and Theorem 2 is available in the supplementary material.

Related work. Rendle et al. [19] proposed pairwise interaction tensors as a model used for tag rec-
ommendation. In a subsequent work, Rendle et al. [18] applied pairwise interaction tensors in the
sequential analysis of purchase data. In both applications, their methods using pairwise interaction
tensor demonstrated excellent performance. However, their algorithms are prone to local optimal
issues and the recovered tensor might be very different from its true value. In contrast, our main re-
sults, Theorem 1 and Theorem 2, guarantee that a convex program can exactly or accurately recover
the pairwise interaction tensors from O(nr log2(n)) observations. In this sense, our work can be
considered as a more effective way to recover pairwise interaction tensors from partial observations.

In practice, various tensor factorization methods are used for estimating missing entries of tensors
[12, 20, 1, 26, 16]. In addition, inspired by the success of nuclear norm minimization heuristics in
matrix completion, several work used a generalized nuclear norm for tensor recovery [23, 24, 15].
However, these work do not guarantee exact recovery of tensors from partial observations.

3 Scalable optimization algorithm

There are several possible methods to solving the optimization problems Eq. (3) and Eq. (5). For
small problem sizes, one may reformulate the optimization problems as semi-definite programs and
solve them using interior point method. The state-of-the-art interior point solvers offer excellent
accuracy for finding the optimal solution. However, these solvers become prohibitively slow for
pairwise interaction tensors larger than 100 × 100 × 100. In order to apply the recover algorithms
on large scale pairwise interaction tensors, we use singular value thresholding (SVT) algorithm
proposed recently by Cai et al. [3], which is a first-order method with promising performance for
solving nuclear norm minimization problems.

We first discuss the SVT algorithm for solving the exact completion problem Eq. (3). For conve-
nience, we reformulate the original optimization objective Eq. (3) as follows,

minimize
X∈SA,Y∈SB ,Z∈SC

‖X‖∗ + ‖Y‖∗ + ‖Z‖∗ (6)

subject to
Xij√
n3

+
Yjk√
n1

+
Zki√
n2

= Tijk, (i, j, k) ∈ Ω,

where we have incorporated coefficients on the nuclear norm terms into the constraints. It is easy
to see that the recovered tensor is given by Pair(n

−1/2
3 X, n

−1/2
1 Y, n

−1/2
2 Z), where X,Y,Z is the
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optimal solution of Eq. (6). Our algorithm solves a slightly relaxed version of the reformulated
objective Eq. (6),

minimize
X∈SA,Y∈SB ,Z∈SC

τ (‖X‖∗ + ‖Y‖∗ + ‖Z‖∗) +
1

2

(
‖X‖2F + ‖Y‖2F + ‖Z‖2F

)
(7)

subject to
Xij√
n3

+
Yjk√
n1

+
Zki√
n2

= Tijk, (i, j, k) ∈ Ω.

It is easy to see that Eq. (7) is closely related to Eq. (6) and the original problem Eq. (3), as the
relaxed problem converges to the original one as τ → ∞. Therefore by selecting a large value the
parameter τ , a minimizing solution to Eq. (7) nearly minimizes Eq. (3).

Our algorithm iteratively minimizes Eq. (7) and produces a sequence of matrices {Xk,Yk,Zk}
converging to the optimal solution (X,Y,Z) that minimizes Eq. (7). We begin with several def-
initions. For observations Ω = {ai, bi, ci|i ∈ [m]}, let operators PΩA

: Rn1×n2 → Rm,
PΩB

: Rn2×n3 → Rm and PΩC
: Rn3×n1 → Rm represents the influence of X,Y,Z on the

m observations. In particular,

PΩA
(X) =

1
√
n3

m∑
i=1

Xaibiδi, PΩB
(Y) =

1
√
n1

m∑
i=1

Ybiciδi, and PΩC
(Z) =

1
√
n2

m∑
i=1

Zciaiδi.

It is easy to verify that PΩA
(X) + PΩB

(Y) + PΩC
(Z) = PΩ(Pair(n

−1/2
3 X, n

−1/2
1 Y, n

−1/2
2 Z)).

We also denote P∗ΩA
be the adjoint operator of PΩA

and similarly define P∗ΩB
and P∗ΩC

. Finally, for
a matrix X for size n1×n2, we define center(X) = X− 1

n1
11TX as the column centering operator

that removes the mean of each n2 columns, i.e., 1T center(X) = 0T .

Starting with y0 = 0 and k = 1, our algorithm iteratively computes

Step (1). Xk = shrinkA(P∗ΩA
(yk−1), τ),

Yk = shrinkB(P∗ΩB
(yk−1), τ),

Zk = shrinkC(P∗ΩC
(yk−1), τ),

Step (2e). ek = PΩ(T )− PΩ(Pair(n
−1/2
3 X, n

−1/2
1 Y, n

−1/2
2 Z))

yk = yk−1 + δek.

Here shrinkA is a shrinkage operator defined as follows

shrinkA(M, τ) , arg min
M̃∈SA

1

2

∥∥∥M̃−M
∥∥∥2

F
+ τ

∥∥∥M̃∥∥∥
∗
. (8)

Shrinkage operators shrinkB and shrinkC are defined similarly except they require M̃ belongs SB
and SC , respectively. We note that our definition of the shrinkage operators shrinkA, shrinkB and
shrinkC are slightly different from that of the original SVT [3] algorithm, where M̃ is unconstrained.
We can show that our constrained version of shrinkage operators can also be calculated using singu-
lar value decompositions of column centered matrices.

Let the SVD of the column centered matrix center(M) be center(M) = UΣVT , Σ =
diag({σi}). We can prove that the shrinkage operator shrinkB is given by

shrinkB(M, τ) = Udiag({σi − τ}+)VT , (9)

where s+ is the positive part of s, that is, s+ = max{0, s}. Since subspace SC is structurally
identical to SB , it is easy to see that the calculation of shrinkC is identical to that of shrinkB . The
computation of shrinkA is a little more complicated. We have

shrinkA(M, τ) = Udiag({σi − τ}+)VT +
1

√
n1n2

({δ − τ}+ + {δ + τ}−)11T , (10)

where UΣVT is still the SVD of center(M), δ = 1√
n1n2

1TM1 is a constant and s− = min{0, s}
is the negative part of s. The algorithm iterates between Step (1) and Step (2e) and produces a series
of (Xk,Yk,Zk) converging to the optimal solution of Eq. (7). The iterative procedure terminates
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when the training error is small enough, namely,
∥∥ek∥∥

F
≤ ε. We refer interested readers to [3] for

a convergence proof of the SVT algorithm.

The optimization problem for noisy completion Eq. (5) can be solved in a similar manner. We only
need to modify Step (2e) to incorporate the quadratical constraint of Eq. (5) as follows

Step (2n). ek = PΩ(T̂ )− PΩ(Pair(n
−1/2
3 X, n

−1/2
1 Y, n

−1/2
2 Z))[

yk

sk

]
= PK

([
yk−1

sk−1

]
+ δ

[
ek

−ε

])
,

where PΩ(T̂ ) is the noisy observations and the cone projection operator PK can be explicitly com-
puted by

PK : (x, t)→


(x, t) if ‖x‖ ≤ t,
‖x‖+t
2‖x‖ (x, ‖x‖) if − ‖x‖ ≤ t ≤ ‖x‖ ,

(0, 0) if t ≤ −‖x‖ .

By iterating between Step (1) and Step (2n) and selecting a sufficiently large τ , the algorithm gener-
ates a sequence of {Xk,Yk,Zk} that converges to a nearly optimal solution to the noisy completion
program Eq. (5) [3]. We have also included a detailed description of both algorithms in the supple-
mentary material.

At each iteration, we need to compute one singular value decomposition and perform a few elemen-
tary matrix additions. We can see that for each iteration k, Xk vanishes outside of ΩA = {aibi} and
is sparse. Similarly Yk,Zk are also sparse matrices. Previously, we showed that the computation of
shrinkage operators requires a SVD of a column centered matrix center(M) − 1

n1
11TX, which is

the sum of a sparse matrix M and a rank-one matrix. Clearly the matrix-vector multiplication of the
form center(M)v can be computed with time O(n + m). This enables the use of Lanczos method
based SVD implementations for example PROPACK [14] and SVDPACKC [2], which only needs
subroutine of calculating matrix-vector products. In our implementation, we develop a customized
version of SVDPACKC for computing the shrinkage operators. Further, for an appropriate choice
of τ , {Xk,Yk,Zk} turned out to be low rank matrices, which matches the observations in the orig-
inal SVT algorithm [3]. Hence, the storage cost Xk,Yk,Zk can be kept low and we only need to
perform a partial SVD to get the first r singular vectors. The estimated rank r is gradually increased
during the iterations using a similar method suggested in [3, Section 5.1.1]. We can see that, in sum,
the overall complexity per iteration of the recovery algorithm is O(r(n+m)).

4 Experiments

Phase transition in exact recovery. We investigate how the number of measurements affects the
success of exact recovery. In this simulation, we fixed n1 = 100, n2 = 150, n3 = 200 and r1 =
r2 = r3 = r. We tested a variety of choices of (r,m) and for each choice of (r,m), we repeat the
procedure for 10 times. At each time, we randomly generated A ∈ SA,B ∈ SB ,C ∈ SC of rank
r. We generated A ∈ SA by sampling two factor matrices UA ∈ Rn1×r,VA ∈ Rn2×r with i.i.d.
standard Gaussian entries and setting A = PSA

(UAV
T
A), where PSA

is the orthogonal projection
onto subspace SA. Matrices B ∈ SB and C ∈ SC are sampled in a similar way. We uniformly
sampled a subset Ω of m entries and reveal them to the recovery algorithm. We deemed A,B,C
successfully recovered if (‖A‖F + ‖B‖F + ‖C‖F )−1(‖X−A‖F + ‖Y −B‖F + ‖Z−C‖F ) ≤
10−3, where X,Y and Z are the recovered matrices. Finally, we set the parameters τ, δ of the exact
recovery algorithm by τ = 10

√
n1n2n3 and δ = 0.9m(n1n2n3)−1.

Figure 1 shows the results of these experiments. The x-axis is the ratio between the number of
measurements m and the degree of freedom d = r(n1 +n2− r) + r(n2 +n3− r) + r(n3 +n1− r).
Note that a value of x-axis smaller than one corresponds to a case where there is infinite number of
solutions satisfying given entries. The y-axis is the rank r of the synthetic matrices. The color of
each grid indicates the empirical success rate. White denotes exact recovery in all 10 experiments,
and black denotes failure for all experiments. From Figure 1 (Left), we can see that the algorithm
succeeded almost certainly when the number of measurements is 2.5 times or larger than the degree
of freedom for most parameter settings. We also observe that, near the boundary of m/d ≈ 2.5,
there is a relatively sharp phase transition. To verify this phenomenon, we repeated the experiments,
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Figure 1: Phase transition with respect to rank and degree of freedom. Left: m/d ∈ [1, 5]. Right:
m/d ∈ [1.5, 3.0].

but only vary m/d between 1.5 and 3.0 with finer steps. The results on Figure 1 (Right) shows that
the phase transition continued to be sharp at a higher resolution.

Stability of recovering from noisy data. In this simulation, we show the recovery performance
with respect to noisy data. Again, we fixed n1 = 100, n2 = 150, n3 = 200 and r1 = r2 = r3 = r
and tested against different choices of (r,m). For each choice of (r,m), we sampled the ground
truth A,B,C using the same method as in the previous simulation. We generated Ω uniformly at
random. For each entry (i, j, k) ∈ Ω, we simulated the noisy observation T̂ijk = Tijk + εijk, where
εijk is a zero-mean Gaussian random variable with variance σ2

n. Then, we revealed {T̂ijk}(ijk)∈Ω to
the noisy recovery algorithm and collect the recovered matrix X,Y,Z. The error of recovery result
is measured by (‖X−A‖F + ‖Y −B‖F + ‖Z−C‖F )/(‖A‖F + ‖B‖F + ‖C‖F ). We tested the
algorithm with a range of noise levels and for each different configuration of (r,m, σ2

n), we repeated
the experiments for 10 times and recorded the mean and standard deviation of the relative error.

noise level relative error
0.1 0.1020 ± 0.0005
0.2 0.1972 ± 0.0007
0.3 0.2877 ± 0.0011
0.4 0.3720 ± 0.0015
0.5 0.4524 ± 0.0015

(a) Fix r = 20, m = 5d and
noise level varies.

observations m relative error
m = 3d 0.1445 ± 0.0008
m = 4d 0.1153 ± 0.0006
m = 5d 0.1015 ± 0.0004
m = 6d 0.0940 ± 0.0007
m = 7d 0.0920 ± 0.0011

(b) Fix r = 20, 0.1 noise level
and m varies.

rank r relative error
10 0.1134 ± 0.0006
20 0.1018 ± 0.0007
30 0.0973 ± 0.0037
40 0.1032 ± 0.0212
50 0.1520 ± 0.0344

(c) Fix m = 5d, 0.1 noise level
and r varies.

Table 1: Simulation results of noisy data.

We present the result of the experiments in Table 1. From the results in Table 1(a), we can see that
the error in the solution is proportional to the noise level. Table 1(b) indicates that the recovery is not
reliable when we have too few observations, while the performance of the algorithm is much more
stable for a sufficient number of observations around four times of the degree of freedom. Table 1(c)
shows that the recovery error is not affected much by the rank, as the number of observations scales
with the degree of freedom in our setting.

Temporal collaborative filtering. In order to demonstrate the performance of pairwise interaction
tensor on real world applications, we conducted experiments on the Movielens dataset. The Movie-
Lens dataset contains 1,000,209 ratings from 6,040 users and 3,706 movies from April, 2000 and
February, 2003. Each rating from Movielens dataset is accompanied with time information provided
in seconds. We transformed each timestamp into its corresponding calendar month. We randomly
select 10% ratings as test set and use the rest of the ratings as training set. In the end, we obtained
a tensor T of size 6040 × 3706 × 36, in which the axes corresponded to user, movie and times-
tamp respectively, with 0.104% observed entries as the training set. We applied the noisy recovery
algorithm on the training set. Following previous studies which applies SVT algorithm on movie
recommendation datasets [11], we used a pre-specified truncation level r for computing SVD in
each iteration, i.e., we only kept top r singular vectors. Therefore, the rank of recovered matrices
are at most r.
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We evaluated the prediction performance in terms of root mean squared error (RMSE). We com-
pared our algorithm with noisy matrix completion method using standard SVT optimization algo-
rithm [3, 4] to the same dataset while ignore the time information. Here we can regard the noisy
matrix completion algorithm as a special case of the recover a pairwise interaction tensor of size
6040 × 3706 × 1, i.e., the time information is ignored. We also noted that the training tensor had
more than one million observed entries and 80 millions total entries. This scale made a number of
tensor recovery algorithms, for example Tucker decomposition and PARAFAC [12], impractical to
apply on the dataset. In contrast, our recovery algorithm took 2430 seconds to finish on a standard
workstation for truncation level r = 100.

The experimental result is shown in Figure 2. The empirical result of Figure 2(a) suggests that, by
incorporating the temporal information, pairwise interaction tensor recovery algorithm consistently
outperformed the matrix completion method. Interestingly, we can see that, for most parameter
settings in Figure 2(b), our algorithm recovered a rank 2 matrix Y representing the change of movie
popularity over time and a rank 15 matrix Z that encodes the change of user interests over time. The
reason of the improvement on the prediction performance may be that the recovered matrix Y and
Z provided meaningful signal. Finally, we note that our algorithm achieves a RMSE of 0.858 when
the truncation level is set to 50, which slightly outperforms the RMSE=0.861 (quote from Figure 7
of the paper) result of 30-dimensional Bayesian Probabilistic Tensor Factorization (BPTF) on the
same dataset, where the authors predict the ratings by factorizing a 6040 × 3706 × 36 tensor using
BPTF method [26]. We may attribute the performance gain to the modeling flexibility of pairwise
interaction tensor and the learning guarantees of our algorithm.
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Figure 2: Empirical results on the Movielens dataset. (a) Comparison of RMSE with different trun-
cation levels. MC: Matrix completion algorithm. RPIT: Recovery algorithm for pairwise interaction
tensor. (b) Rank of recovered matrix X,Y,Z. r1 = rank(X), r2 = rank(Y), r3 = rank(Z).

5 Conclusion

In this paper, we proved rigorous guarantees for convex programs for recovery of pairwise interac-
tion tensors with missing entries, both in the absence and in the presence of noise. We designed a
scalable optimization algorithm for solving the convex programs. We supplemented our theoretical
results with simulation experiments and a real-world application to movie recommendation. In the
noiseless case, simulations showed that the exact recovery almost always succeeded if the number of
observations is a constant time of the degree of freedom, which agrees asymptotically with the the-
oretical result. In the noisy case, the simulation results confirmed that the stable recovery algorithm
is able to reliably recover pairwise interaction tensor from noisy observations. Our results on the
temporal movie recommendation application demonstrated that, by incorporating the temporal in-
formation, our algorithm outperforms conventional matrix completion and achieves state-of-the-art
results.

Acknowledgments

This work was fully supported by the Basic Research Program of Shenzhen (Project No.
JCYJ20120619152419087 and JC201104220300A), and the Research Grants Council of the Hong
Kong Special Administrative Region, China (Project No. CUHK 413212 and CUHK 415212).

8



References
[1] Evrim Acar, Daniel M Dunlavy, Tamara G Kolda, and Morten Mørup. Scalable tensor factorizations for

incomplete data. Chemometrics and Intelligent Laboratory Systems, 106(1):41–56, 2011.

[2] M Berry et al. Svdpackc (version 1.0) user’s guide, university of tennessee tech. Report (393-194, 1993
(Revised October 1996)., 1993.

[3] Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A singular value thresholding algorithm for matrix
completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.

[4] Emmanuel J Candes and Yaniv Plan. Matrix completion with noise. Proceedings of the IEEE, 98(6):925–
936, 2010.

[5] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex optimization. Foundations
of Computational mathematics, 9(6):717–772, 2009.

[6] A Evgeniou and Massimiliano Pontil. Multi-task feature learning. 2007.

[7] Maryam Fazel, Haitham Hindi, and Stephen P Boyd. A rank minimization heuristic with application to
minimum order system approximation. In American Control Conference, 2001, 2001.

[8] David Gross, Yi-Kai Liu, Steven T Flammia, Stephen Becker, and Jens Eisert. Quantum state tomography
via compressed sensing. Physical review letters, 105(15):150401, 2010.
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