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1 Main results

For convenience, we first restate the convex program for recovery of pairwise interaction tensors and
our main results in both noiseless and noisy cases.

Exact recovery in the absence of noise. We propose to recover matrices A,B,C and therefore
tensor T = Pair(A,B,C) using the following convex program,

minimize
X∈SA,Y∈SB ,Z∈SC

√
n3 ‖X‖∗ +

√
n1 ‖Y‖∗ +

√
n2 ‖Z‖∗ (1)

subject to Xij + Yjk + Zki = Tijk, (i, j, k) ∈ Ω.

We show that, under the incoherence conditions, the above nuclear norm minimization method suc-
cessful recovers a pairwise interaction tensor T when the number of observationsm isO(nr log2 n)
with high probability.
Theorem 1. Let T ∈ Rn1×n2×n3 be a pairwise interaction tensor T = Pair(A,B,C) and A ∈
SA,B ∈ SB ,C ∈ SC as defined in Proposition 1. Without loss of generality assume that 9 ≤ n1 ≤
n2 ≤ n3. Suppose we observed m entries of T with the locations sampled uniformly at random
from [n1] × [n2] × [n3] and also suppose that each of A,B,C is (µ0, µ1)-incoherent. Then, there
exists a universal constant C, such that if

m > C max{µ2
1, µ0}n3rβ log2(6n3),

where r = max{rank(A), rank(B), rank(C)} and β > 2 is a parameter, the minimizing solution
X,Y,Z for program Eq. (1) is unique and satisfies X = A,Y = B,Z = C with probability at
least 1− log(6n3)6n2−β

3 − 3n2−β
3 .

Stable recovery in the presence of noise. Our noisy model assumes that we observe

T̂ijk = Tijk + σijk, for all (i, j, k) ∈ Ω, (2)

where σijk is a noise term which maybe deterministic or stochastic. We assume σ has bounded
energy on Ω and specifically that ‖PΩ(σ)‖F ≤ ε1 for some ε1 > 0, where PΩ(·) denotes the restric-
tion on Ω. We derive the error bound of the following quadratically-constrained convex program
which recover T from observations under this assumption.

minimize
X∈SA,Y∈SB ,Z∈SC

√
n3 ‖X‖∗ +

√
n1 ‖Y‖∗ +

√
n2 ‖Z‖∗ (3)

subject to
∥∥∥PΩ(Pair(X,Y,Z))− PΩ(T̂ )

∥∥∥
F
≤ ε2.

Theorem 2. Let T = Pair(A,B,C) and A ∈ SA,B ∈ SB ,C ∈ SC . Let Ω be the set of
observations as described in Theorem 1. Suppose we observe T̂ijk for (i, j, k) ∈ Ω as defined in
Eq. (2) and also assume that ‖PΩ(σ)‖F ≤ ε1 holds. Denote the reconstruction error of the optimal
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solution X,Y,Z of convex program Eq. (3) as E = Pair(X,Y,Z)−T . Also assume that ε1 ≤ ε2.
Then, we have

‖E‖∗ ≤ 5

√
2rn1n2

2

8β log(n1)
(ε1 + ε2),

with probability at least 1− log(6n3)6n2−β
3 − 3n2−β

3 .

We will also prove Proposition 1 in the later part of the supplemetary material.
Proposition 1. For any pairwise interaction tensor T = Pair(A,B,C), there exists unique ma-
trices A′ ∈ SA,B

′ ∈ SB ,C
′ ∈ SC such that Pair(A,B,C) = Pair(A′,B′,C′) where we

define SB = {M ∈ Rn2×n3 : 1TM = 0T },SC = {M ∈ Rn3×n1 : 1TM = 0T } and

SA = {M ∈ Rn1×n2 : 1TM =
(

1
n2

1TM1
)
1T }.

2 Proof of Theorem 1

Sampling model. Recall that Theorem 1 assumed that Ω is sampled uniformly at random from
the collection of all set of size m. This uniform sampling model turns out to be awkward to deal
with. Following the strategy of [4, 5], we use the sampling with replacement model on Ω as a
proxy for uniform sampling. This differs from the earlier approach by [2] where the authors used a
Bernoulli sampling model as a proxy for uniform sampling model. The sampling with replacement
model has enabled a significant simplification on the proof and therefore we shall follow this model
in the rest of our proof. Specifically, we consider the case where the index of each observation is
sampled independently and uniformly from the set [n1]× [n2]× [n3]. Note that, in expectation, the
sampling with replacement model is the same with uniform sampling model. It may appear to be
troublesome since the sampling with replacement model can lead to duplicated entires. However,
the following lemma allows us to bound the probability of failure when sampling with replacement
by the likelihood of error under uniform sampling model.
Lemma 1. ([5, Proposition 3.1]) The probability that the recovery algorithm Eq. (1) fails when Ω
is sampled uniformly from the collection of sets of size m is no larger than the probability that the
algorithm fails when each index of Ω is sampled independently and uniformly.

Proof. The proof is similar to [3, Section ii.C] and [5, Proposition 3.1]. Let Ω′ be a collection of
indices sampled independent and uniformly from the set [n1]× [n2]× [n3]. Also denote Ωk as a set
of entries of size k sampled uniformly at random from all sets of entries of size k. Then, we have

Pr(Failure(Ω′)) =

m∑
k=0

Pr(Failure(Ω′)||Ω′| = k) Pr(|Ω′| = k)

=

m∑
k=0

Pr(Failure(Ωk)) Pr(|Ω′| = k)

≥ Pr(Failure(Ωm))

m∑
k=0

Pr(|Ω′| = k)

= Pr(Failure(Ωm)).

Therefore, the probability of failure when sampling with replacement is larger than that under uni-
form sampling model. Hence, we only need to upper bound the failure probability under sampling
with replacement model to prove Theorem 1. In the rest of this paper, we will consider solely
sampling with replacement model.

Preliminaries. In order to present the proof, we require several additional notations. We shall
slightly abuse the notation and denote ek be the kth standard basis vector, equal to 1 in kth entry
and 0 everywhere else. Denote δij = eie

T
j be the matrix which equals to 1 in entry (i, j) and 0 in

other entries. The dimension of ek and δij shall be clear from context.
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Let Ω = {(ai, bi, ci)}i∈[m], where each (ai, bi, ci) is sampled independently and uniformly at ran-
dom from [n1]× [n2]× [n3]. We define the operatorRΩ : Rn1×n2 ⊗ Rn2×n3 ⊗ Rn3×n1 → Rm to
be

RΩ(X,Y,Z) =

m∑
i=1

1
√
n3
〈X, δaibi〉+

1
√
n1
〈Y, δbici〉+

1
√
n2
〈Z, δciai〉 . (4)

Then, the original convex program Eq. (1) can be reformulated as

minimize
X∈SA,Y∈SB ,Z∈SC

‖X‖∗ + ‖Y‖∗ + ‖Z‖∗ (5)

subject to RΩ(X,Y,Z) = t,

where ti = Taibici is the ith observation of T . Note that the scaling coefficients on X,Y,Z have
been incorporated intoRΩ.

In order to further simplify the notations, we consider the following block diagonal matrix

M =

[
X

Y
Z

]
,

or more compactly M = diag(X,Y,Z). It is clear that ‖M‖∗ = ‖X‖∗ + ‖Y‖∗ + ‖Z‖∗. Now,
denote δ(A)

ab , diag(δab,0n2×n3
,0n3×n1

) where δ(A)
ab is a n1 × n2 matrix and 0n2×n3

and 0n3×n1

are zero matrices of size n2 × n3 and n3 × n1, respectively. Similarly, we define define δ(B)
bc ,

diag(0n1×n2
, δbc,0n3×n1

) and δ(C)
ca , diag(0n1×n2

,0n2×n3
, δca). Now, we have

M =
∑
ab

〈
X, δ

(A)
ab

〉
+
∑
bc

〈
Y, δ

(B)
bc

〉
+
∑
ca

〈
Z, δ(C)

ca

〉
.

Then, we may equivalently defineRΩ by

RΩ(M) =

m∑
i=1

1
√
n3

〈
M, δ

(A)
aibi

〉
+

1
√
n1

〈
M, δ

(B)
bici

〉
+

1
√
n2

〈
M, δ(C)

ciai

〉
=

m∑
i=1

〈
M,

1
√
n3
δ

(A)
aibi

+
1
√
n1
δ

(B)
bici

+
1
√
n2
δ(C)
ciai

〉

,
m∑
i=1

〈M, σaibici〉 , (6)

where in the last equation, we have defined

σaibici ,
1
√
n3
δ

(A)
aibi

+
1
√
n1
δ

(B)
bici

+
1
√
n2
δ(C)
ciai . (7)

Note that we haveRΩ(M) = RΩ(X,Y,Z). Therefore, we can further rewrite the convex program
as

minimize
M∈S

‖M‖∗ (8)

subject to RΩ(M) = t,

where we have define the linear subspace S as the product space of SA, SB and SC , namely,

S = {diag(A,B,C) : A ∈ SA,B ∈ SB ,C ∈ SC}.

Hence, M ∈ S if and only if M is a block diagonal matrix diag(X,Y,Z) and X ∈ SA, Y ∈ SB
and Z ∈ SC . For convenience, we also define the orthogonal complement S⊥ by

S⊥ = {diag(A,B,C) : A ∈ S⊥A ,B ∈ S⊥B ,C ∈ S⊥C }.

Indeed, the convex program Eq. (8), despite the constraint M ∈ S, seems to be very similar to
the standard nuclear norm heuristic to matrix completion problem. However, we found the major
challenge here is that the observation operator RΩ is non-orthogonal. Previously, Gross et al. [4]
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showed that the nuclear norm heuristic leads to exact recovery when the observation operator is
orthogonal. The orthogonality of observation operator is critical to their argument and therefore
their proof cannot be directly applied to our problem. In this work, we extend their technique to deal
with the non-orthogonal operatorRΩ. It turns out that the constraint M ∈ S plays a vital role in the
argument which is unknown in previous work of matrix completion.

In the rest of paper, we shall consider the following singular value decompositions of A,B,C

A = UAΣAV
T
A, B = UBΣBV

T
B , C = UCΣCV

T
C .

Recall that we have defined SB = {M ∈ Rn2×n3 : 1TM = 0T }, SC = {M ∈ Rn3×n1 : 1TM =

0T } and SA = {M ∈ Rn1×n2 : 1TM =
(

1
n2

1TM1
)
1T }. Now, we introduce the orthogonal

decompositions of SA = TA ⊕ T⊥A , SB = TB ⊕ T⊥B and SC = TC ⊕ T⊥C , where TA is the
linear space TA = {UAY

T + XVT
A : ∀X,Y} ∩ SA and T⊥A is the orthogonal complement (and

respectively TB , TC , T⊥B , T
⊥
C ) are defined similarly. Analogous to the definition of S, we define

subspace T as
T = {diag(A,B,C) : A ∈ TA,B ∈ TB ,C ∈ TC}.

We also denote the orthogonal complement of T as T⊥ which is defined in a similar way.

Further, the orthogonal projection operator onto TA is given by

PTA
(Z) = PUA

PSA
(Z) + PSA

(Z)PVA
−PUA

PSA
(Z)PVA

,

where PUA
, PVA

are the orthogonal projections onto UA and VA respectively and PSA
is the or-

thogonal projection onto SA. By simple calculation, we can derive

PSA
(A) = A− 1

n1
1T1A +

1

n1n2
(1TA1)1T1.

Similarly, we can derive the orthogonal projection operator PTB
(respectively PTC

) onto TB (re-
spectively TC) as PTB

(Z) = PUB
PSB

(Z) + PSB
(Z)PVB

− PUB
PSB

(Z)PVB
and PTC

(Z) =
PUC
PSC

(Z) +PSC
(Z)PVC

−PUC
PSC

(Z)PVC
, where PSB

(B) = B− 1
n2

1T1B and PSC
(C) =

C− 1
n3

1T1C.

In addition, we also consider the orthogonal decomposition Rn1×n2 = SA ⊕ S⊥A (respectively
SB ,S⊥B , SC , S⊥C ). The orthogonal projection operator PS⊥A , PS⊥B and PS⊥C are given by

PS⊥A (A) = (I − PSA
)(A) =

1

n1
1T1A− 1

n1n2
(1TA1)1T1,

and
PS⊥B (B) =

1

n2
1T1B, PS⊥C (C) =

1

n3
1T1C.

Moreover, we can derive the orthogonal projection operators PS as PS(diag(X,Y,Z)) =
diag(PSA

(X),PSB
(Y),PSC

(Z)). The orthogonal projection operators PT ,PS⊥ and PT⊥ can also
be derived similarly.

To proceed, we shall need one additional tool, the non-commutative Bernstein inequality.
Theorem 3. (Non-commutative Bernstein inequality [5, Theorem 3.2]) Let X1, . . . ,Xm

be independent zero mean random matrices of dimension d1 × d2. Suppose ρ2
k =

max{
∥∥E[XkX

T
k ]
∥∥ ,∥∥E[XT

kXk]
∥∥} and ‖Xk‖ ≤M almost surely for every k. Then, for any τ > 0,

Pr

[∥∥∥∥∥
m∑
k=1

Xk

∥∥∥∥∥ > τ

]
≤ (d1 + d2) exp

(
−τ2/2∑m

k=1 ρ
2
k +Mτ/3

)
.

We omit the proof of the non-commutative Bernstein inequality. For details, readers may re-
fer to [5, Appendix A] and [1]. Furthermore, the righthand side is always less than (d1 +
d2) exp(− 3

8τ
2/(
∑m
k=1 ρ

2
k)) when τ ≤ 1

M

∑m
k=1 ρ

2
k. In our proof, we will solely rely on the con-

densed version of non-commutative Bernstein inequality.

We are now ready to state the proof of Theorem 1. First, in the following theorem, we show that
if there exists a “dual certificate”, the solution to convex program Eq. (1) is unique and exactly
recovers the pairwise interaction tensor.
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Theorem 4. Let r = max{r1, r2, r3}. Let W = diag(UAV
T
A,UBV

T
B ,UCV

T
C) be a block diago-

nal matrix. Suppose that there exists a “dual certificate” F ∈ range(R∗Ω) such that

‖PT (F)−W‖F ≤
√

r

2n3
, ‖PT⊥(F)‖ < 1

2

And also suppose that
1

2
‖PT⊥(E)‖∗ >

√
r

2n3
‖PT (E)‖F

holds for any E ∈ ker(RΩ). Then, the A,B,C is the unique minimizing solution of Eq. (1).

Proof. Let M = diag
(√
n3A,

√
n1B,

√
n2C

)
be a block diagonal matrix. By the definition of

nuclear norm, we have ‖M‖∗ =
√
n3 ‖A‖∗ +

√
n1 ‖B‖∗ +

√
n2 ‖C‖∗. Now, consider for any

block diagonal matrix E = diag(EA,EB ,EC) such that E ∈ ker(RΩ). Pick UA⊥ and VA⊥ such
that [UA,UA⊥ ] and [VA,VA⊥ ] are unitary matrices and

〈
UA⊥V

T
A⊥ ,PT⊥A (EA)

〉
=
∥∥∥PT⊥A (E)

∥∥∥
∗
.

Also pick UB⊥ ,VB⊥ ,UC⊥ ,VC⊥ similarly. Let W⊥ = diag(UA⊥V
T
A⊥ ,UB⊥V

T
B⊥ ,UC⊥V

T
C⊥).

We have W⊥ ∈ T⊥ and 〈W⊥,PT⊥(E)〉 = ‖PT⊥(E)‖∗. Also note the fact that 〈F,E〉 = 0 since
F ∈ range(RTΩ) and E ∈ ker(RΩ). Then it follows that,

‖M + E‖∗ ≥ 〈W + W⊥,M + E〉
= ‖M‖∗ + 〈W + W⊥,E〉
= ‖M‖∗ + 〈W + W⊥ − F,E〉
= ‖M‖∗ + 〈W + W⊥ − F,PT (E) + PT⊥(E) + PS⊥(E)〉
= ‖M‖∗ + 〈W − PT (F),PT (E)〉+ 〈W⊥ − PT⊥(F),PT⊥(E)〉
= ‖M‖∗ − 〈PT (F)−W,PT (E)〉+ 〈W⊥,PT⊥(E)〉 − 〈PT⊥(F),PT⊥(E)〉
≥ ‖M‖∗ − ‖PT (F)−W‖F ‖PT (E)‖F + ‖PT⊥(E)‖∗ − ‖PT⊥(F)‖ ‖PT⊥(E)‖∗

> ‖M‖∗ −
√

r

2n3
‖PT (E)‖F +

1

2
‖PT⊥(E)‖∗

≥ ‖M‖∗ =
√
n3 ‖A‖∗ +

√
n1 ‖B‖∗ +

√
n2 ‖C‖∗ ,

where the first inequality follows from the variational characterization of nuclear norm
‖M + E‖∗ = sup‖Q‖=1 〈Q,M + E〉. We have also used the fact that E ∈ S and therefore
PS⊥(E) = 0. Therefore, if there exists any X,Y,Z obeying RΩ(diag(

√
n3(X −A),

√
n1(Y −

B),
√
n2(Z − C)) = 0, or equivalently 1√

n3

√
n3(Xij − Aij) + 1√

n1

√
n1(Yjk − Bjk) +

1√
n2

√
n2(Zki − Cki) = 0 for all (i, j, k) ∈ Ω, we would have ‖X‖∗ + ‖Y‖∗ + ‖Z‖∗ >

‖A‖∗ + ‖B‖∗ + ‖C‖∗. In other words, if X,Y,Z statisifes Xij + Yjk + Zki = Aij +Bjk + Cki
for any (i, j, k) ∈ Ω, the weighted sum of the nuclear norm of X,Y and Z would be strictly larger
than that of A,B and C. Therefore, A,B and C is the unique minimizer of program Eq. (1).

Therefore, we remain to show that such a dual certificate F exists with high probability. The proof
relies on a series of applications of noncommutative Bernstein inequality and the clever golfing
scheme proposed by [4]. We begin with an elementary bound on ‖PT (σabc)‖F .
Proposition 2. Suppose that A,B,C are (µ0, µ1)-incoherent. Then, for any (a, b, c) ∈ [n1] ×
[n2]× [n3], the length of orthogonal projection of σabc onto space T is bounded by

‖PT (σabc)‖2F ≤
28µ0r

n1n2
,

where σabc , 1√
n3
δ

(A)
ab + 1√

n1
δ

(B)
bc + 1√

n2
δ

(C)
ca .

Proof. By definition, we have ‖PT (σabc)‖2F = 1
n3
‖PTA

(δab)‖2F + 1
n1
‖PTB

(δbc)‖2F +
1
n2
‖PTC

(δca)‖2F . Therefore, it suffices to bound these terms individually.
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We first deal with ‖PTB
(δbc)‖F . It can be decomposed as

‖PTB
(δbc)‖2F = 〈PTB

(δbc),PTB
(δbc)〉

= 〈PTB
(δbc), δbc〉

= ‖PUB
PSB

(δbc)‖2F + ‖PSB
(δbc)PVB

‖2F − ‖PUB
PSB

(δbc)PVB
‖2F

≤ ‖PUB
PSB

(δbc)‖2F + ‖PSB
(δbc)PVB

‖2F .

Now it suffices to bound both terms ‖PUB
PSB

(δbc)‖2F and ‖PSB
(δbc)PVB

‖2F . We have

PUB
PSB

(δbc) = PUB
δbc −

1

n3
PUB

11T δbc = PUB
δbc,

where the second equality holds since B ∈ SB and therefore PUB
1 = 0. Combining with the

incoherence property A0, we have

‖PUB
PSB

(δbc)‖2F = ‖PUB
δbc‖2F = ‖PUB

eb‖2F ≤
µ0r

n2
.

Next, we need to bound ‖PSB
(δbc)PVB

‖2F . We have

‖PSB
(δbc)PVB

‖2F =

∥∥∥∥δbcPVB
− 1

n2
11T δbcPVB

∥∥∥∥2

F

≤ 2 ‖δbcPVB
‖2F +

2

n2
2

∥∥11T δbcPVB

∥∥2

F

= 2 ‖PVB
ec‖2F +

2

n2
2

∥∥1eTc PVB

∥∥2

F

= 2 ‖PVB
ec‖2F +

2

n2
2

∥∥∥∥∥∑
b′

eb′e
T
c PVB

∥∥∥∥∥
2

F

= 2 ‖PVB
ec‖2F +

2

n2
2

‖n2PVB
ec‖2F

= 4 ‖PVB
ec‖2F

≤ 4µ0r

n3
,

where the first inequality is the Cauchy-Schwartz inequality and the final inequality is due to inco-
herence property A0. Therefore,

‖PTB
(δbc)‖2F ≤

µ0r

n2
+

4µ0r

n3
≤ 5µ0r

n2
.

In addition, we can bound ‖PTC
(δca)‖F using the same method.

It remains to bound ‖PTA
(δab)‖2F which is no greater than ‖PUA

PSA
(δab)‖2F + ‖PSA

(δab)PVA
‖2F

following a similar analysis. Again, we start with bounding ‖PUA
PSA

(δab)‖2F . We have

‖PUA
PSA

(δab)‖2F =

∥∥∥∥PUA
δab −

1

n1
PUA

1eTb +
1

n1n2
PUA

11T
∥∥∥∥2

F

≤ 3 ‖PUA
δab‖2F +

3

n2
1

∥∥PUA
1eTb

∥∥2

F
+

3

n2
1n

2
2

∥∥PUA
11T

∥∥2

F

= 3 ‖PUA
ea‖2F +

3

n2
1

∥∥∥∥∥∑
a′

PUA
ea′

∥∥∥∥∥
2

F

+
3

n2
1n

2
2

∥∥∥∥∥∑
a′b′

PUA
ea′

∥∥∥∥∥
2

F

≤ 3 ‖PUA
ea‖2F +

3

n1

∑
a′

‖PUA
ea′‖2F +

3

n1n2

∑
a′b′

‖PUA
ea′‖2F

≤ 9µ0r

n1
,
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where we have repeatedly applied Cauchy-Schwartz inequality and assumption A1. We can also
bound ‖PSA

(δab)PVA
‖2F using the same method as

‖PSA
(δab)PVA

‖2F ≤
9µ0r

n2
.

Therefore, we have

‖PTA
(δab)‖2F ≤

9µ0r

n1
+

9µ0r

n2
≤ 18µ0r

n1
.

Finally, combining the above inequalities, we have

‖PT (σabc)‖2F =
1

n3
‖PTA

(δab)‖2F +
1

n1
‖PTB

(δbc)‖2F +
1

n2
‖PTC

(δca)‖2F ≤
26µ0r

n1n2

≤ 18µ0r

n1n3
+

5µ0r

n1n2
+

5µ0r

n1n2

≤ 28µ0r

n1n2
.

The next proposition shows that, in expectation, n1n2n3

m R∗ΩRΩ is an isometric operator on S. There-
fore, the observation operator RΩ can be regarded as an orthogonal projection operator in expecta-
tion on subspace S.
Proposition 3. Suppose Ω is a set of entries of size m which is sampled independent and uniformly
with replacement. Then for any block diagonal matrix E = diag (EA,EB ,EC) satisfying that
E ∈ S, denoting O(E) , n1n2n3

m E[R∗ΩRΩ(E)], we have

PS(O(E)) = E.

Proof. We can calculate O(E) as follows,

O(E) =
∑
abc

〈E, σabc〉σabc

=
∑
abc

[〈
E,

(
1
√
n3
δ

(A)
ab +

1
√
n1
δ

(B)
bc +

1
√
n2
δ(C)
ca

)〉](
1
√
n3
δ

(A)
ab +

1
√
n1
δ

(B)
bc +

1
√
n2
δ(C)
ca

)
=

(
EA +

1
√
n1n3

1n11
T
n3
ETB +

1
√
n2n3

ETC1n31
T
n2
,

EB +
1

√
n1n2

1n2
1Tn1

ETC +
1

√
n1n3

ETA1n1
1Tn3

,

EC +
1

√
n2n3

1n3
1Tn2

ETA +
1

√
n1n2

ETB1n2
1Tn1

)
=

(
EA +

1
√
n1n3

1n11
T
n3
ETB ,EB +

1
√
n1n2

1n21
T
n1
ETC +

1
√
n1n3

ETA1n11
T
n3
,EC +

1
√
n2n3

1n31
T
n2
ETA

)
,

where the third equality follows since 1Tn2
EB = 0Tn3

and 1Tn3
EC = 0Tn1

.

Now, by the definition of SA and S⊥A , since 1Tn3
ETB1n2

= 0, we have 1n2
1Tn3

ETB ∈ S⊥A and therefore
PSA

(1n1
1Tn3

ETB) = 0n1×n2
. We also have PSB

(1n2
1Tn1

ETC) = 0n2×n3
and PSC

(1n3
1Tn2

ETA) =

0n3×n1
. In addition, we have ETA1n1

1Tn3
∈ S⊥B and hence PSB

(ETA1n1
1Tn3

) = 0n3×n1
. Combining

these facts, we have
PS(O(E)) = E.

Next, we show that, with high probability, R∗ΩRΩ is very close to an isometry on subspace T if the
number of observations |Ω| is sufficient by appealing to the non-commutative Bernstein inequality.
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Lemma 2. Suppose Ω is a set of entries of size m which is sampled independently and uniformly
from [n1]× [n2]× [n3] with replacement. Then for all β > 1,

n1n2n3

m

∥∥∥∥PTR∗ΩRΩPT −
m

n1n2n3
PT
∥∥∥∥ ≤

√
16pµ0rn3β log(n3)

3m

with probability at least 1− 2n2−2β
3 if m > 448

3 µ0rn3β log(n3).

Proof. By Proposition 3, for any E ∈ T , we have
E [PTR∗ΩRΩPT ] = PTE [R∗ΩRΩ]PT

= PT
(

m

n1n2n3
O
)
PT

=
m

n1n2n3
PT .

Now we use noncommunicative Bernstein inequality to bound the deviation of the operator
PTR∗ΩRΩPT from its expected value m

n1n2n3
PT in spectral norm.

Consider any block diagonal matrix E = diag(EA,EB ,EC), we can decompose PTR∗ΩRΩPT (E)
as follows,

PTR∗ΩRΩPT (E) =

m∑
k=1

〈PT (E), σakbkck〉 PT (σakbkck)

=

m∑
k=1

〈E,PT (σakbkck)〉 PT (σakbkck)

Define the operator τabc which maps E to 〈E,PT (σabc)〉 PT (σabc). Clearly, we have
PTR∗ΩRΩPT =

∑m
k=1 τakbkck and E[τakbkck ] = 1

n1n2n3
PT . We can bound the operator norm

‖τabc‖ using Proposition 3 as follows
‖τabc‖ = sup

‖E‖F =1

‖τabc(E)‖F

= ‖PT (σabc)‖2F

≤ 28µ0r

n1n2
.

Now we can compute the bound,∥∥∥∥τakbkck − 1

n1n2n3
PT
∥∥∥∥ ≤ max

{
28µ0r

n1n2
,

1

n1n2n3

}
≤ 28µ0r

n1n2
,

where we have utilized the fact that ‖A−B‖ ≤ max{‖A‖ , ‖B‖} for positive semidefinite matrices
A and B. We also have ∥∥E[τ2

akbkck
]
∥∥ =

∥∥∥E [‖PT (σakbkck))‖2F τakbkck
]∥∥∥

≤ 28µ0r

n1n2
‖E [τakbkck ]‖

=
28µ0r

n2
1n

2
2n3

.

Therefore, ∥∥∥∥∥E
[(

τakbkck −
1

n1n2n3
PT
)2
]∥∥∥∥∥ =

∥∥∥∥E[τ2
akbkck

]− 1

n2
1n

2
2n

2
3

PT
∥∥∥∥

≤ max

{∥∥E[τ2
akbkck

]
∥∥ , 1

n2
1n

2
2n

2
3

}
≤ max

{
28µ0r

n2
1n

2
2n3

,
1

n2
1n

2
2n

2
3

}
≤ 28µ0r

n2
1n

2
2n3

.
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The lemma follows by applying the noncommuntative Bernstein inequality.

The next lemma asserts that, for a fixed matrix E,R∗ΩRΩ(E) is close to O(E) in spectral norm.
Lemma 3. Suppose Ω is a set of entries of size m which is sampled independent and uniformly with
replacement. Then, for any β > 1 and any E ∈ S,∥∥∥n1n2n3

m
PSR∗ΩRΩ(E)−E

∥∥∥ ≤√72βn2n2
3 log(n1 + n2 + n3)

m
‖E‖∞ ,

holds with probability at least 1−2(n1 +n2 +n3)1−β provided thatm > 98
9 βn2 log(n1 +n2 +n3).

Proof. Define the operator γabc which maps E to n1n2n3 〈E, σabc〉σabc. We can decompose
n1n2n3

m PSR∗ΩRΩ(E)−E as

n1n2n3

m
PSR∗ΩRΩ −E =

1

m

[∑
k

(PSγakbkck(E)−E)

]
.

We can bound ‖PSγakbkck(E)‖ as,

‖PSγakbkck(E)‖ ≤ ‖γakbkck(E)‖
= n1n2n3 ‖〈E, σakbkck〉σakbkck‖
≤ 3n2n3 ‖E‖∞

Therefore, we have

‖PSγakbkck(E)−E‖ ≤ ‖PSγaksbkck(E)‖+‖E‖ ≤ 3n2n3 ‖E‖∞+n3 ‖O(E)‖∞ ≤
7

2
n2n3 ‖E‖∞ ,

where we used the fact that ‖E‖ ≤ n3 ‖E‖∞ and n ‖E‖∞ ≤
1
2n2n3 ‖E‖∞ for n2 ≥ 2. We also

have∥∥E [(PSγakbkck(E))
∗

(PSγakbkck(E))
]∥∥ ≤ ∥∥E [(γakbkck(E))

∗
(γakbkck(E))

]∥∥
=
∥∥∥E [n2

1n
2
2n

2
3 〈E, σakbkck〉

2
σ∗akbkckσakbkck

]∥∥∥
=

∥∥∥∥∥n1n2n3

∑
abc

〈E, σabc〉2 σ∗abcσabc

∥∥∥∥∥
≤

∥∥∥∥∥9n2n3

∑
abc

‖E‖2∞ σ∗abcσabc

∥∥∥∥∥
= 9n2n3 ‖E‖2∞

∥∥∥∥∥∑
ab

δ
(A)
bb +

∑
bc

δ
(B)
bc +

∑
ca

δ(C)
ca

∥∥∥∥∥
≤ 9n2n

2
3 ‖E‖

2
∞

We now obtain, ∥∥E [(PSγakbkck(E)−E)
∗

(PSγakbkck(E)−E)
]∥∥

≤ max {‖E[(PSγakbkck(E))∗(PSγakbkck(E))]‖ , ‖E∗E‖}
≤ 9n2n

2
3 ‖E‖

2
∞ .

Then the lemma follows by the noncommunative Bernstein Inequality.

The next concentration result is the final piece for constructing the dual certificate.
Lemma 4. Suppose Ω is a set of entries of size m sampled independently with replacement. Then
for any E ∈ T and any β > 2, we have∥∥∥n1n2n3

m
PTR∗ΩRΩ(E)−E

∥∥∥
∞
≤
√

864βµ0rn3 log n3

m
‖E‖∞

with probability at least 1− 6n2−β
3 if m > 50βµ0rn3 log(n3).
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Proof. Without loss of generality, for each a, b, we define the random variable

χab(A) =
〈
δ

(A)
ab , n1n2n3 〈E, σa′b′c′〉 PT (σa′b′c′)−E

〉
,

where a′, b′, c′ is sampled uniformly random from [n1]×[n2]×[n3]. We also define χbc(B) and χca(C)

similarly. We now bound each of χab(A) , χbc(B) and χca(C) using standard Berstein inequality. By
definition, we have E[χab(A) ] = 0 and

|χab(A) | ≤
∣∣∣〈δ(A)

ab , n1n2n3 〈E, σa′b′c′〉 PT (σa′b′c′)
〉∣∣∣+

∣∣∣〈δ(A)
ab ,E

〉∣∣∣
= n1n2n3 |〈E, σa′b′c′〉|

∣∣∣〈δ(A)
ab ,PT (σa′b′c′)

〉∣∣∣+
∣∣∣〈δ(A)

ab ,E
〉∣∣∣

≤ 3
√
n1n2n3 ‖E‖∞

∥∥∥PT (δ
(A)
ab )

∥∥∥
F
‖PT (σa′b′c′)‖F + ‖E‖∞

≤ 90n3µ0r ‖E‖∞
Now we can also bound E[χ2

ab(A) ] as follows,

E[χ2
ab(A) ] =

1

n1n2n3

∑
a′b′c′

〈
δ

(A)
ab , n1n2n3 〈E, σa′b′c′PT (σa′b′c′)〉 −E

〉2

= n1n2n3

∑
a′b′c′

〈E, σa′b′c′〉2
〈
δ

(A)
ab ,PT (σa′b′c′)

〉2

−
〈
E, δ

(A)
ab

〉2

≤ n1n2

∑
a′b′c′

〈E, σa′b′c′〉2
〈
δ

(A)
ab ,PT (δ

(A)
a′b′)

〉2

≤ 9n1n2n3 ‖E‖2∞
∑
a′b′

〈
δ

(A)
ab ,PT (σa′b′)

〉2

≤ 9n1n2n3 ‖E‖2∞
∥∥∥PT (δ

(A)
ab )

∥∥∥2

F

≤ 162µ0rn3 ‖E‖2∞ .

Clearly the entry
〈
δ

(A)
ab ,

n1n2n3

m PTR∗ΩRΩ(E)−E
〉

is the mean value of m i.i.d copies of χab(A) .
Apply the Bernstein’s Inequality, we have

Pr

[∣∣∣〈δ(A)
ab ,

n1n2n3

m
PTR∗ΩRΩ(E)−E

〉∣∣∣ >√864βµ0rn3 log(n3)

m
‖E‖∞

]
≤ 2n−β3 .

By union bound, we have

Pr

[∥∥∥n1n2n3

m
PTR∗ΩRΩ(E)−E

∥∥∥
∞
>

√
864βµ0rn3 log(n3)

m
‖E‖∞

]
≤ 6n2−β

3 .

Finally, we adapt the “golfling scheme” proposed by [4] to construct the dual certificate F.
Lemma 5. Suppose Ω is a set of entries of size sample independently with replacement for m >
3600 max{µ2

1, µ0}rn3β log2(6n3). There exists F ∈ range(R∗Ω) satisfies

‖PT (F)−W‖F ≤
√

r

2n3
, ‖PT⊥(F)‖ < 1

2
,

with probability at least 1− 3 log(6n3)(3n3)2−β for all β > 2.

Proof. Partition m entries of Ω into p partitions of size q, where

q ≥ 3600 max{µ0, µ
2
1}rn3β log(6n3), p ≥ log(6n3).

Denote Ωj be the j th partition. By Lemma 2 and union bound, we have

Pr

[
n1n2n3

q

∥∥∥∥PTR∗Ωj
RΩj
PT −

q

n1n2n3
PT
∥∥∥∥ ≤ 1

2
for all j ∈ [p]

]
≥ 1− log(6n3)2n2−2β

3 .
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Now suppose the above event happens. Define F0 = 0, G0 = W and

Fj = Fj−1 +
n1n2n3

q
R∗Ωj−1

RΩj−1
(Gj−1),Gj = W − PT (Fj)

for j ∈ [p]. We can now bound ‖Gj‖F as follows,

‖Gj‖F = ‖W − PT (Fj)‖F

=

∥∥∥∥W − PT (Fj−1)− n1n2n3

q
PTR∗Ωj−1

RΩj−1
(Gj−1)

∥∥∥∥
F

=

∥∥∥∥Gj−1 −
n1n2n3

q
PTR∗Ωj−1

RΩj−1
(Gj−1)

∥∥∥∥
F

≤ 1

2
‖Gj−1‖F .

It follows that ‖Gp‖F ≤ 2−p ‖G0‖F = 2−p
√

3r ≤ r
2n3

, since p ≥ log(2n3) ≥ log2

√
2n3. Now

choose F = Fp, it is easy to check that

‖PT (F)−W‖F ≤
√

r

2n3

with at least probability 1− log(6n3)2n2−β
3 .

We now argue that Fp also satisfies the second inequality in this lemma with high probability. Apply
Lemma 3 and Lemma 4, we have

Pr

∥∥∥∥n1n2n3

q
PSR∗Ωj

RΩj
(Gj−1)−Gj−1

∥∥∥∥ ≤
√

72n1n2
2β log(n1 + n2 + n3)

q
‖Gj−1‖∞

 ≥ 1−2(n1+n2+n3)1−β ,

Pr

[∥∥∥∥Gj−1 −
n1n2n3

q
PTR∗Ωj

RΩj (Gj−1)

∥∥∥∥ ≤ 1

2
‖Gj−1‖∞

]
≥ 1− 6n2−β

3 .

By union bound, the above random events holds for all j = 1, . . . , p with probability at least 1 −
2 log(6n3)(3n3)1−β . Suppose these random event happens, we can bound PT⊥(Fp) as follows.

‖PT⊥(Fp)‖ ≤
p∑
j=1

∥∥∥∥n1n2n3

q
PT⊥R∗Ωj

RΩj
(Gj−1)

∥∥∥∥
=

p∑
j=1

∥∥∥∥PT⊥ (n1n2n3

q
PSR∗Ωj

RΩj
(Gj−1)−Gj−1

)∥∥∥∥
≤

p∑
j=1

∥∥∥∥n1n2n3

q
PSR∗Ωj

RΩj (Gj−1)−Gj−1

∥∥∥∥
≤

p∑
j=1

√
72n2n2

3β log(n1 + n2 + n3)

q
‖Gj−1‖∞

= 2

p∑
j=1

2−j

√
72n2n2

3β log(n1 + n2 + n3)

q
‖W‖∞

<

√
288µ2

1rn3β log(3n3)

q

<
1

2
,

where the second equality holds because PT⊥(Gj−1) = 0 for all j and the last inequality follows
since q > 3600µ2

1rn3β log(6n3). Finally, by union bound, the probability that all above random
events happen is at least 1− 3 log(6n3)(3n3)2−β .
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Remark 1. By golfing scheme construction, the dual certificate F can be decomposed by

F =

p∑
i=1

n1n2n3

q
R∗Ωi
RΩi

(Gi),

for some G1, . . . ,Gp.

We will use this property later for proving the stable recovery result in the presence of noise.

The next lemma is an elementary Chernoff bound which shows that maximum duplication of any
entry in Ω when sampling with replacement is bounded by 8

3β log(n1). This gives us the upper
bound of the spectral norm ofRΩ.
Lemma 6. Suppose Ω is a set of entries of size sample independently with replacement for m >
3600 max{µ2

1, µ0}rn3β log2(6n3). We have

‖RΩ‖ ≤

√
8β log(n3)

n1

for n3 ≥ 1 and β ≥ 1 with probability at least 1− 3n2−2β
3 .

Proof. Given a set of entries Ω = {(ak, bk, ck)}k∈[m] sampled uniformly with replacement, denote
the number of reptitions as η(A)

ab = |{k|ak = a, bk = b}|, η(B)
bc = |{k|bk = b, ck = c}| and

η
(C)
ca = |{k|ck = c, ak = a}|.
‖RΩ‖ = sup

‖E‖F =1

‖RΩ(E)‖F

≤ 1
√
n1

sup
‖E‖F =1

√√√√ m∑
k=1

〈
E, δ

(A)
akbk

+ δ
(B)
bkck

+ δ
(C)
ckak

〉2

≤ 1
√
n1

sup
‖E‖F =1

√√√√3

[
m∑
k=1

〈
E, δ

(A)
akbk

〉2

+

m∑
k=1

〈
E, δ

(B)
bkck

〉2

+

m∑
k=1

〈
E, δ

(C)
ckak

〉2
]

=
1
√
n1

sup
‖E‖F =1

√√√√3

[∑
ab

〈
E, δ

(A)
ab

〉2

η
(A)
ab +

∑
bc

〈
E, δ

(B)
bc

〉2

η
(B)
bc +

∑
ca

〈
E, δ

(C)
ca

〉2

η
(C)
ca

]

=
1
√
n1

√
3 max{max

ab
η

(A)
ab ,max

bc
η

(B)
bc ,max

ca
η

(C)
ca }.

Therefore, it suffices to bound the maximum number of repetitions of any entry in Ω. To this end, we
can apply Chernoff bound for the Bernoulli distribution. The probability of an entry a, b be sampled
for more than t times can be bounded by Chernoff bound.

Pr

[
η

(A)
ab ≥

8

3
β log(n1)

]
≤
(

8

3
β log(n1)

)− 8
3β log(n1)

exp

(
8

3
β log(n1)

)
≤ n−2β

1 ,

when n1 ≥ 9. We can also bound η(B)
bc and η(C)

ca similarly. By union bound, we have

max{max
ab

η
(A)
ab ,max

bc
η

(B)
bc ,max

ca
η(C)
ca } ≤

8

3
β log(n)

hold with probability at least 1− 3n2−2β
3 by union bound.

Finally, to apply Theorem 4, we require the following bound relating ‖PT⊥(E)‖∗ and ‖PT (E)‖F
for any fixed matrix E ∈ ker(RΩ).
Lemma 7. Suppose Ω is a set of entries of size sample independently with replacement for m >
3600 max{µ2

1, µ0}rn3β log2(2n3). Then, for any E ∈ ker(RΩ), we have

1

2
‖PT⊥(E)‖∗ <

√
r

2n3
‖PT (E)‖F ,

with probability at least 1− 3n2−β
3 .
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Proof. Since E ∈ ker(RΩ), we have

0 = ‖RΩ(E)‖F ≥ ‖RΩPT (E)‖F − ‖RΩPT⊥(E)‖F .
Apply Lemma 2,

n1n2n3

m

∥∥∥∥PTR∗ΩRΩPT −
m

n1n2n3
PT
∥∥∥∥ ≤ 1

2
(9)

holds with probability at least 1 − 3n2−β
3 . Suppose Eq. (9) holds, we can bound ‖RΩPT (E)‖F as

follows

‖RΩPT (E)‖2F = 〈RΩPT (E),RΩPT (E)〉
= 〈E,PTR∗ΩRΩPT (E)〉

≥ m

2n1n2n3
‖PT (E)‖2F .

On the other hand, we need to bound ‖RΩPT⊥(E)‖F . Suppose ‖RΩ‖ ≤
√

8β log(n3)
n1

≤√
8β
n1

log(n3) which holds with probability at least 1− n2−β
3 by Lemma 6, we have

‖RΩPT⊥(E)‖F ≤ ‖RΩ‖ ‖PT⊥(E)‖F

≤
√

8β

n1
log(n3) ‖PT⊥(E)‖F .

Therefore,

‖PT⊥(E)‖∗ ≥ ‖PT⊥(E)‖F

≥
√

n1

8β log2(n3)
‖RΩPT⊥(E)‖F

≥
√

n1

8β log2(n3)
‖RΩPT (E)‖F

≥
√

mn1

8n1n2n3β log2(n3)
‖PT (E)‖F

≥

√
3600n3n1rµ0β log2(6n3)

8n1n2n3β log2(6n)
‖PT (E)‖F

>

√
2r

n3
‖PT (E)‖F .

We are now ready to prove the exact recovery result Theorem 1.

Proof. (Theorem 1) By Lemma 5, there exists F ∈ range(R∗Ω) such that

‖PT (F)−W‖F ≤
√

r

2n3
, ‖PT⊥(F)‖ < 1

2
,

with probability at least 1− 3 log(6n3)(3n3)2−β for all β > 2.

On the other hand, Lemma 7 shows that for any E ∈ ker(RΩ),

1

2
‖PT⊥(E)‖∗ >

√
r

2n3
‖PT (E)‖F ,

holds with probability at least 1− 3n2−β
3 .

By union bound, the above random events happen simultaneously with probability at least 1 −
3 log(6n3)(3n3)2−β − 3n2−β

3 . Finally, in the case that both random events holds, by Theorem. 4,
the solution to Eq. (1) is unique and exactly recovers A,B,C and therefore the pairwise interaction
tensor T = Pair(A,B,C).
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3 Proof of Theorem 2

In this section, we generalize the proof of Theorem 2 for the noisy cases.

Proof. (Theorem 2) First, define operator Q = γ2R∗ΩRΩ, where γ = ‖RΩ‖−1, as the normalized
version ofR∗ΩRΩ. Clearly, we have ‖Q‖ = 1. By Lemma 6, we can bound γ by γ ≥

√
n1

8β log(n3) .

We can decompose the optimal solution M̂ of the convex progam Eq. (3) into the sum of the true
matrix M and the error matrix E, namely, M̂ = M + E. To prove the theorem, we need to bound
the error term E in its nuclear norm ‖E‖∗. To do this, we start with bounding ‖Q(E)‖F . Denote
the noisy observations as an m-dimensional vector y, where yi = Taibici . We have

‖Q(E)‖F ≤
∥∥∥Q(M̂)− γ2R∗Ω(y)

∥∥∥
F

+
∥∥γ2R∗Ω(y)−Q(M)

∥∥
F

= γ2
∥∥∥R∗ΩRΩ(M̂)−R∗Ω(y)

∥∥∥
F

+ γ2 ‖R∗Ω(y)−R∗ΩRΩ(M)‖F

≤ γ2 ‖R∗Ω‖
∥∥∥RΩ(M̂)− y

∥∥∥
F

+ γ2 ‖R∗Ω‖ ‖y −RΩ(M)‖F

≤ γε1 + γε2 , δ. (10)

In the last inequality, the first term
∥∥∥RΩ(M̂)− y

∥∥∥
F

is no greater than ε2 due to constraint of opti-

mization problem and the second term ‖y −RΩ(M)‖F ≤ ε1 is the assumption on the observation
noise.

On the other hand, we can bound ‖Q(E)‖F by following
‖Q(E)‖F ≥ ‖QPT (E)‖F − ‖QPT ⊥(E)‖F .

For the second term, we have ‖QPT ⊥(E)‖F ≤ ‖PT ⊥(E)‖F . Now, we focus on the first term, we
have

‖QPT (E)‖F = γ2 ‖R∗ΩRΩPT (E)‖F
≥ γ2 ‖PTR∗ΩRΩPT (E)‖F
≥ γ2 m

n1n2n3

∥∥∥n1n2n3

m
PTR∗ΩRΩPT (E)

∥∥∥
F

≥ γ2 m

n1n2n3

[
‖PT (E)‖F −

∥∥∥n1n2n3

m
PTR∗ΩRΩPT (E)− PT (E)

∥∥∥
F

]
≥ γ2 m

n1n2n3

[
‖PT (E)‖F −

∥∥∥n1n2n3

m
PTR∗ΩRΩPT − PT

∥∥∥ ‖PT (E)‖F
]

≥ γ2 m

n1n2n3

1

2
‖PT (E)‖F ≥

m

16β log(n3)n2n3
‖PT (E)‖F

Therefore, we have

‖Q(E)‖F ≥
m

16βn2n3 log(n3)
‖PT (E)‖F − ‖PT ⊥(E)‖F . (11)

Now, combine Eq. (10) and Eq. (11), we have

‖PT (E)‖F ≤
16βn2n3 log(n3)

m
(δ + ‖PT ⊥(E)‖F ) ≤ 16βn2n3 log(n3)

m
(δ + ‖PT ⊥(E)‖∗) .

Next, we proceed to bound ‖PT ⊥(E)‖∗. We can use a similar subgradient argument as in the proof
of Theorem 4. Let F ∈ range(R∗Ω) be the dual certificate as described in Theorem 4, we have∥∥∥M̂∥∥∥

∗
= ‖M + E‖∗
≥ 〈W + W⊥,M + E〉 = ‖M‖∗ + 〈W + W⊥,E〉
= ‖M‖∗ + 〈W + W⊥ − F,E〉+ 〈F,E〉
= ‖M‖∗ + 〈W − PT (F),PT (E)〉+ 〈W⊥ − PT ⊥(F),PT ⊥(E)〉+ 〈F,E〉

≥ ‖M‖∗ −
√
r

n2
3

‖PT (E)‖F +
1

2
‖PT ⊥(E)‖∗ + 〈F,E〉 .

14



Recall that M̂ is the optimal solution to the convex program Eq. (3), we have
∥∥∥M̂∥∥∥

∗
≤ ‖M‖∗.

Hence, we have
1

2
‖PT⊥(E)‖∗ ≤

√
r

n2
3

‖PT (E)‖F − 〈F,E〉 .

Now we bound 〈F,E〉. By the golfling scheme construction of F in Lemma. 5, we have

〈F,E〉 =

p∑
i=1

〈
R∗Ωi
RΩi

(Gi),E
〉

=

p∑
i=1

〈
Gi,R∗Ωi

RΩi(E)
〉

≥ −
p∑
i=1

‖Gi‖F
∥∥R∗Ωi

RΩi
(E)
∥∥
F
.

For each i, we can bound
∥∥R∗Ωi

RΩi
(E)
∥∥
F

by∥∥R∗Ωi
RΩi

(E)
∥∥
F

=
∥∥∥R∗Ωi

RΩi
(M̂)−R∗Ωi

(yΩi
)
∥∥∥
F

+
∥∥R∗Ωi

(yΩi
)−R∗Ωi

RΩi
(M)

∥∥
F

≤
∥∥R∗Ωi

∥∥∥∥∥RΩi
(M̂)− yΩi

∥∥∥
F

+
∥∥R∗Ωi

∥∥ ‖yΩi
−RΩi

(M)‖F

=
ε1
γ

+
ε2
γ
,

where yΩi
is the restriction of y on Ωi.

Therefore, we have

〈F,E〉 ≥ −ε1 + ε2
γ

p∑
i=1

‖Gi‖F

≥ −2(ε1 + ε2)

γ
‖G0‖F

= −2(ε1 + ε2)

γ
‖W‖F ≥ −

2(ε1 + ε2)

γ

√
r1 + r2 + r3.

Consequently, for reasonable values of parameters, we have
1

2
‖PT⊥(E)‖∗ ≤

√
r

n2
3

‖PT (E)‖F +
2(ε1 + ε2)

γ

√
r1 + r2 + r3

≤ 16β log(n3)
√
r

m
(δ + ‖PT⊥(E)‖∗) +

2(ε1 + ε2)

γ

√
r1 + r2 + r3

≤ 1

16
(δ + ‖PT⊥(E)‖∗) +

ε1 + ε2
16

.

Hence, we have

‖PT⊥(E)‖∗ ≤
16

7

(
δ +

ε1 + ε2
16

)
≤ 3δ.

Last, combining the above inequalities and setting ε = ε1 + ε2, we can finally bound the error E in
terms of its nuclear norm as follows

‖E‖∗ ≤
√

2r ‖PT (E)‖F + ‖PT⊥(E)‖∗
≤
√

2rn2δ + (
√

2rn2 + 1) ‖PT⊥(E)‖∗
≤
√

2rn2γε+ 3(
√

2rn2 + 1)γε

≤ 5
√

2rn2γε

≤ 5

√
2rn1n2

2

8β log(n1)
ε.
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4 Proof of Proposition 1

We first review some terminologies. We call a matrix A a doubly centered matrix, if each column
and each row of A sums up to zero, i.e. 1TA = 0T and A1 = 0 hold simultaenously. We also call
a vector v a centered vector, if the sum of its entries equals to zero, namely, 1Tv = 0.
Lemma 8. Given an arbitrary pariwise interaction tensor T = Pair(A,B,C), there exists a unique
7-tuple (A0,B0,C0,a,b, c, d) such that A0,B0,C0 are doubly centered matrices, a,b, c are cen-
tered vectors and satisfies

Tijk = A0
ij +B0

jk + C0
ki + ai + bj + ck + d, for all (i, j, k) ∈ [n1]× [n2]× [n3]. (12)

Remark 2. We can interpret the quantities a,b, c, d in Lemma 8 as axis-aligned biases of tensor
T . For example, every entries of the form T1jk are influenced by bias a1; the entries of form Ti1k
for all (i, k) are biased by b1; the entries of form Tij1 for all (i, j) are biased by c1. In addition, all
entries of T is biased by d.

Proof. (Lemma 8) In the following, we shall prove the existence and uniqueness separately.

Existence. Given any A,B and C of appropriate size, we now construct the 7-tuple
(A0,B0,C0,a,b, c, d) specified in the lemma.

We define the mean values of matrices A,B and C by σA = 1
n1n2

1TA1, σB = 1
n2n3

1TB1

and σC = 1
n3n1

1TB1. We also denote the mean vectors of columns of matrices A,B and C by
ac = 1

n1
AT1, bc = 1

n2
BT1 and cc = 1

n3
CT1. Similarly, we denote the mean vectors of rows of

matrices A,B and C by ar = 1
n2

A1, br = 1
n3

B1 and cr = 1
n1

C1.

Now, we construct the desired 7-tuple (A0,B0,C0,a,b, c, d) by

A0
ij = Aij − acj − ari + σa, B0

jk = Bjk − bcj − brk + σb, C0
ki = Cki − cci − crk + σc

ai = ari + cci − σa − σc, bj = brj + acj − σb − σa, ck = crk + bck − σc − σb
d = σa + σb + σc,

where (i, j, k) ranges within [n1] × [n2] × [n3]. It is easy to verify that A0,B0,C0 are doubly
centered matrices and a,b, c are centered vectors and that Aij +Bjk +Cki = A0

ij +B0
jk +C0

ki +
ai + bj + ck + d.

Uniqueness. Suppose there exists two 7-tuples (A0
1,B

0
1,C

0
1,a1,b1, c1, d1) and

(A0
2,B

0
2,C

0
2,a2,b2, c2, d2) that satisfy the centering property specified in the lemma. Con-

sider their differences (A0,B0,C0,a,b, c, d) = (A0
1 − A0

2,B
0
1 − B0

2,C
0
1 − C0

2,a1 − a2,b1 −
b2, c1 − c2, d1 − d2). Clearly, we remain to show that (A0,B0,C0,a,b, c, d) are zeros.

It is clear A0,B0,C0 are doubly centered matrices and a,b, c are centered vectors. In addition, the
following holds for all (i, j, k)

0 = A0
ij +B0

jk + C0
ki + ai + bj + ck + d. (13)

We first show d = 0. We can see this by summing over all i, j, k on both sides of Eq. (13),

0 =
∑
ijk

[A0
ij +B0

jk + C0
ki + ai + bj + ck + d] = n1n2n3d,

where the first inequality holds by the centering properties on A0,B0,C0,a,b, c.

Next, we show that a = 0. This can be done by summing over all (j, k) ∈ [n2]× [n3] on both sides
of Eq. (13) and for any i,

0 =
∑
jk

[A0
ij +B0

jk + C0
ki + ai + bj + ck + d]

=
∑
jk

[A0
ij +B0

jk + C0
ki + ai + bj + ck]

= n2n3ai,
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where we have used the result that d = 0 and the centering properties. Similarly, we can show
b = 0 and c = 0.

Finally, we remain to show A = 0. Again, fix any i, j and sum over all k ∈ [n3], we have

0 =
∑
k

[A0
ij +B0

jk + C0
ki + ai + bj + ck + d] = n3A

0
ij ,

where we have used the facts that ai = bj = ck = d = 0. We can prove B = 0 and C = 0 using
similar arguments.

Lemma 8 essentially states that the representation of a pairwise interaction tensor is unique if one
separate out these bias components. We can immmediately obtain Proposition 1 by condensing the
unique representation scheme (A0,B0,C0,a,b, c, d) for pairwise interaction tensors identified by
Lemma 8. In particular, we construct A′ ∈ SA,B

′ ∈ SB ,C
′ ∈ SC by setting A′ij = A0

ij +

ai + d, B′jk = B0
jk + bj and C ′ij = C0

ki + ck. By the centering property of A0,B0,C0 and
a,b, c, it is clear that each column of A′ sums up to a same value (n1d) and each column of B′,C′
sums up to zero. Hence A′,B′,C′ satisfy the constraints defined by SA, SB , SC respectively. We
can also easily show the uniqueness of A′,B′,C′ under this constraints using the uniqueness of
(A0,B0,C0,a,b, c, d).

Proof. (Propostion 1) The existence follows immediately from Lemma 8. Specifically, we can set
A′ij = A0

ij +ai +d, B′jk = B0
jk + bj and C ′ki = C0

ki + ck. We can easily verify that A′ ∈ SA,B′ ∈
SB and C′ ∈ SC .

Now we prove the uniqueness. Suppose that we have Pair(A1,B1,C1) = Pair(A2,B2,C2),
where A1 ∈ SA, A2 ∈ SA, B1 ∈ SB , B2 ∈ SB , C1 ∈ SC and C2 ∈ SC . Denote A = A1 −A2,
B = B1 −B2 and C = C1 −C2, we remain to show that the differences A,B and C are zero.

Note that A ∈ SA,B ∈ SB ,C ∈ SC . We can construct 7-tuple (A0,B0,C0,a,b, c, d) similarly
to the proof of Lemma 8. We define the mean values of matrix A by σA = 1

n1n2
1TA1 (note that

the mean value of B and C is zero). We denote the mean vectors of rows of matrices A,B and C
by ar = 1

n2
A1, br = 1

n3
B1 and cr = 1

n1
C1.

Now, we construct the desired 7-tuple (A0,B0,C0,a,b, c, d) by

A0
ij = Aij − ari + σa, B0

jk = Bjk − brk, C0
ki = Cki − crk,

ai = ari − σa,

where (i, j, k) ranges within [n1] × [n2] × [n3]. In addition, we set b = br, c = cr and d = σa.
We can verify that A0

ij +B0
jk + C0

ki + ai + bj + ck + d = Aij +Bjk + Cki = 0. By Lemma 8, it
follows immediately that (A0,B0,C0,a,b, c, d) are zeros. Therefore, we have A = 0, B = 0 and
C = 0.

5 Details of recovery algorithm
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Algorithm 1 Exact Recovery of Pairwise Interaction Tensor
1: procedure EXACTRECOVER(Ω = {aibici}i∈[m],PΩ(T ) = {Taibici}i∈[m], τ, δ, ε)
2: y← 0
3: for k = 1, . . . , kmax do
4: [X, rA]← shrinkA(P∗ΩA

(y), τ, rA)
5: [Y, rB ]← shrinkB(P∗ΩB

(y), τ, rB)
6: [Z, rC ]← shrinkB(P∗ΩC

(y), τ, rC) . shrinkC is algorithmically identical to shrinkB .

7: e← PΩ(T )− PΩ(Pair(n
−1/2
3 X, n

−1/2
1 Y, n

−1/2
2 Z)

8: if ‖e‖F / ‖PΩ(T )‖F ≤ ε then
9: break

10: end if
11: y← y + δe
12: end for
13: end procedure
14: return [n

−1/2
3 X, n

−1/2
1 Y, n

−1/2
2 Z]

Algorithm 2 Stable Recovery of Pairwise Interaction Tensor

1: procedure STABLERECOVER(Ω = {aibici}i∈[m],PΩ(T̂ ) = {T̂aibici}i∈[m], τ, δ, ε, ε1)
2: y← 0
3: s← 0
4: for k = 1, . . . , kmax do
5: [X, rA]← shrinkA(P∗ΩA

(y), τ, rA)
6: [Y, rB ]← shrinkB(P∗ΩB

(y), τ, rB)
7: [Z, rC ]← shrinkB(P∗ΩC

(y), τ, rC)

8: e← PΩ(T̂ )− PΩ(Pair(n
−1/2
3 X, n

−1/2
1 Y, n

−1/2
2 Z)

9: if ‖e‖F /
∥∥∥PΩ(T̂ )

∥∥∥
F
≤ ε then

10: break
11: end if
12: y← y + δe
13: s← s− δε1
14: [y, s]← PK(y, s)
15: end for
16: end procedure
17: return [n

−1/2
3 X, n

−1/2
1 Y, n

−1/2
2 Z]

Algorithm 3 Shrinkage operator

1: procedure SHRINKB(X̂, τ, r)
2: s← r + 1
3: repeat
4: [U,Σ,V]← svd(center(X̂), s) . svd(M, s): return top s singular vectors of M
5: s← s+ 5
6: until σs−5 ≤ τ
7: r ← max{j : σj > τ}
8: X←

∑r
i=1(σj − τ)ujv

∗
j

9: return [X, r]
10: end procedure
11: procedure SHRINKA(X̂, τ, r)
12: [X, r]← shrinkB(X̂, τ, r)

13: δ ← sum(X̂) . sum(X̂): elemetwise sum of matrix X̂
14: γ ← 1

n1n2
({δ − τ}+ + {δ + τ}−)

15: return [X + γ11T , r]
16: end procedure
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