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1 Main results

For convenience, we first restate the convex program for recovery of pairwise interaction tensors and
our main results in both noiseless and noisy cases.

Exact recovery in the absence of noise. We propose to recover matrices A, B, C and therefore
tensor 7 = Pair(A, B, C) using the following convex program,

minimize Vs || X, + v [Y], + V2 ||Z], (D

XeSa,YESB,ZESC
subjectto  X;; + Yjr + Zpi = Tijr, (i,7,k) € Q.

We show that, under the incoherence conditions, the above nuclear norm minimization method suc-
cessful recovers a pairwise interaction tensor 7 when the number of observations m is O (nr log? n)
with high probability.

Theorem 1. Let T € R™*"2X"3 be q pairwise interaction tensor T = Pair(A,B,C) and A €
Sa,B € Sp,C € Sc as defined in Proposition 1. Without loss of generality assume that 9 < ny <
ne < ng. Suppose we observed m entries of T with the locations sampled uniformly at random
from [n1] X [na] X [n3] and also suppose that each of A, B, C is (uo, f11)-incoherent. Then, there
exists a universal constant C, such that if

m > Cmax{u3, j1o}ngrflog?(6ns),
where r = max{rank(A), rank(B),rank(C)} and 8 > 2 is a parameter, the minimizing solution

X,Y,Z for program Eq. (1) is unique and satisfies X = A, Y = B,Z = C with probability at
least 1 — log(6ns)6ns ” — 3n3 .

Stable recovery in the presence of noise. Our noisy model assumes that we observe

Tijk = Tiji + oijr, forall (i,7,k) € €, ()

where 053, is a noise term which maybe deterministic or stochastic. We assume ¢ has bounded
energy on 2 and specifically that ||Pq(0)|| » < € for some €; > 0, where Pq(-) denotes the restric-
tion on 2. We derive the error bound of the following quadratically-constrained convex program
which recover 7 from observations under this assumption.

minimize Vs |1 X, + Ve Y, + V2 12, 3)

XeSa,YESB,ZES

subject to HPQ(Pair(X, Y,Z)) — Pa(T)

‘ S €9.
F

Theorem 2. Let 7 = Pair(A,B,C) and A € S4,B € Sp,C € Sc. Let ) be the set of

observations as described in Theorem|l| Suppose we observe Tijk Jor (i,7,k) € Q as defined in
Eq. @) and also assume that ||Pq(0)| < €1 holds. Denote the reconstruction error of the optimal



solution X, Y, Z of convex program Eq. (B) as E = Pair(X,Y,Z) — T. Also assume that €1 < €s.
Then, we have

2
2rnins

E|l, <5{/ ———
1Bl =5y $510g0nr)

(61 + 62)7

with probability at least 1 — log(6n3)6n§_ﬁ — 3n§_5.

We will also prove Proposition 1 in the later part of the supplemetary material.

Proposition 1. For any pairwise interaction tensor T = Pair(A, B, C), there exists unique ma-
trices A’ € S4,B’" € Sp,C’" € S¢ such that Pair(A,B,C) = Pair(A’,B’,C’) where we
define Sp = {M € R*ms : 1TM = 07},S¢c = {M € R=*m : 1TM = 07} and

Sq={MeR">m: 1TM = (n%lTlvu) 17},
2  Proof of Theorem 1

Sampling model. Recall that Theorem [I] assumed that 2 is sampled uniformly at random from
the collection of all set of size m. This uniform sampling model turns out to be awkward to deal
with. Following the strategy of [4, 5], we use the sampling with replacement model on () as a
proxy for uniform sampling. This differs from the earlier approach by [2] where the authors used a
Bernoulli sampling model as a proxy for uniform sampling model. The sampling with replacement
model has enabled a significant simplification on the proof and therefore we shall follow this model
in the rest of our proof. Specifically, we consider the case where the index of each observation is
sampled independently and uniformly from the set [n1] X [n2] X [n3]. Note that, in expectation, the
sampling with replacement model is the same with uniform sampling model. It may appear to be
troublesome since the sampling with replacement model can lead to duplicated entires. However,
the following lemma allows us to bound the probability of failure when sampling with replacement
by the likelihood of error under uniform sampling model.

Lemma 1. (/3 Proposition 3.1]) The probability that the recovery algorithm Eq. (1) fails when Q
is sampled uniformly from the collection of sets of size m is no larger than the probability that the
algorithm fails when each index of ) is sampled independently and uniformly.

Proof. The proof is similar to [3, Section ii.C] and [55] Proposition 3.1]. Let 2’ be a collection of
indices sampled independent and uniformly from the set [n1] x [na] X [n3]. Also denote Q. as a set
of entries of size k sampled uniformly at random from all sets of entries of size k. Then, we have

Pr(Failure(Q')) = ZPr(Failure(Q')HQ’| = k) Pr(|Y| = k)
k=0

Pr(Failure(2y)) Pr(|Y| = k)

=
Il

0
m

> Pr(Failure(Q,,)) Y Pr(|Q| = k)
k=0
= Pr(Failure(£2,,)).

O

Therefore, the probability of failure when sampling with replacement is larger than that under uni-
form sampling model. Hence, we only need to upper bound the failure probability under sampling
with replacement model to prove Theorem [I] In the rest of this paper, we will consider solely
sampling with replacement model.

Preliminaries. In order to present the proof, we require several additional notations. We shall
slightly abuse the notation and denote e be the kth standard basis vector, equal to 1 in kth entry
and 0 everywhere else. Denote 6;; = e;e! be the matrix which equals to 1 in entry (4, ) and 0 in
other entries. The dimension of e, and 9;; shall be clear from context.



Let Q = {(as, b, ¢;) }ic[m]> Where each (a;, b;, ;) is sampled independently and uniformly at ran-
dom from [n4] X [ng] X [ng]. We define the operator R, : R™*"2 @ R"2X"3 @ R™8*"1 — R™ to
be

1 1
(X,Y,Z) —— (Y, 0p,¢, ——(Z,0¢.q,) - 4
R Z 7 a1 1> + \/ﬂ < 76bzcz> + \/@ < 7501a1> ( )

Then, the original convex program Eq. can be reformulated as

L X v z
xedPipimize 1X|, + Y1, + I1Z], S

subjectto Ro(X,Y,Z) =t,

where t; = T,,»,¢, is the ith observation of 7. Note that the scaling coefficients on X, Y, Z have
been incorporated into Rg,.

In order to further simplify the notations, we consider the following block diagonal matrix
X
M= Y
Z

or more compactly M = diag(X,Y,Z). Itis clear that | M|, = || X]||, + Y], + ||Z]],. Now,

denote 5<A) £ diag(ap, Onyxngs Onaxn, ) Where 5(’;‘) is amny X ng matrix and 0y, x5 and O, xp,
(B) A

are zero matrices of size ny X n3 and ns X ni, respectively. Similarly, we define define 5

dlag( n1Xnos 51)07 n3><n1) and (Sca = dlag( nyXnos 0n2><n37 6ca)~ Now, we have

M= 3 ()« 2 a0) + T (2 0)

ca

Then, we may equivalently define R, by
RQ(M):iL<M75<Ab>>+L<M,5£B>>+L< 75<C>>
pt \/@ a;b; \/7?1 iCq \/@ Ci @y

W Lgm Lo >
5 =5
; < r bic; \/@ e
= Z M y Oayb; cl ) (6)
i=1

where in the last equation, we have defined

1 (A) 1 (B 1
e 2§ — — 5. 7
Oa;bic; \/7 a;b; + ﬁnl bici + ﬁnz cia; ( )

Note that we have R(M) = Rq(X,Y, Z). Therefore, we can further rewrite the convex program
as

minimize ||M]|, (3)
MesS
subjectto Ro(M) =t,
where we have define the linear subspace S as the product space of S4, Sp and S¢, namely,
S = {diag(A,B,C): A € S4,B € Sp,C e Sc}.

Hence, M € S if and only if M is a block diagonal matrix diag(X,Y,Z) and X € S4,Y € Sp
and Z € S¢. For convenience, we also define the orthogonal complement S+ by

1 = {diag(A,B,C): A € S4,Bec S5,Cec SE}).

Indeed, the convex program Eq. (8], despite the constraint M € S, seems to be very similar to
the standard nuclear norm heuristic to matrix completion problem. However, we found the major
challenge here is that the observation operator R¢, is non-orthogonal. Previously, Gross et al. [4]]



showed that the nuclear norm heuristic leads to exact recovery when the observation operator is
orthogonal. The orthogonality of observation operator is critical to their argument and therefore
their proof cannot be directly applied to our problem. In this work, we extend their technique to deal
with the non-orthogonal operator R, It turns out that the constraint M € S plays a vital role in the
argument which is unknown in previous work of matrix completion.

In the rest of paper, we shall consider the following singular value decompositions of A, B, C

A =U,3,VL, B=Up%pVEL C=UcZcVE.
Recall that we have defined Sp = {M € R"2*"s : 1TM = 07}, S¢ = {M € R®>m : 1TM =
07} and S4 = {M € Rmxnz : 1TM = (nileMl) 17}. Now, we introduce the orthogonal
decompositions of S4 = T4 @ T4, Sp = Tp ® Tg and S¢ = Tc ® Tx, where T4 is the
linear space T4 = {UAYT + XVZ; VX, Y} NSy and Tj is the orthogonal complement (and
respectively Tz, Tc, Té, Té) are defined similarly. Analogous to the definition of S, we define

subspace 1" as
T = {diag(A,B,C): A €T4,BeTg,CecTc}.

We also denote the orthogonal complement of 7" as T+ which is defined in a similar way.

Further, the orthogonal projection operator onto 74 is given by
Pr,(Z) =Py, Ps, (Z) + Psa (Z)PVA —Pu,Ps, (Z)PVA )

where Py, , Py, are the orthogonal projections onto U4 and V4 respectively and Pg, is the or-
thogonal projection onto S4. By simple calculation, we can derive

1 1
Ps,(A)=A—- —1T1A + —(1TA1)171.
ny ninz
Similarly, we can derive the orthogonal projection operator Pr, (respectively Pr,) onto Tp (re-
spectively Tc) as PTB (Z) = PUBPSB (Z) + PSB (Z)PVB — PUBPSB (Z)PVB and PTC(Z) =
Py.Ps.(Z)+Ps.(Z)Py, —Py.Ps.(Z)Py,, where Ps,(B) =B — %ITIB and Ps,. (C) =

C-— n—la1T1C.

In addition, we also consider the orthogonal decomposition R™:*"2 = S, @ Sj (respectively
Sg.S%, Sc, S&). The orthogonal projection operator Ps+, Pgy and Py are given by
1 1

Ps;(A) = (T—Ps,)(A) = —171A - —

(1TA1)171,

and 1 1

_ 1T e
Moreover, we can derive the orthogonal projection operators Pg as Pg(diag(X,Y,Z)) =
diag(Ps, (X), Ps;(Y), Ps. (Z)). The orthogonal projection operators Pr, Pg. and Py can also

be derived similarly.

To proceed, we shall need one additional tool, the non-commutative Bernstein inequality.
Theorem 3. (Non-commutative Bernstein inequality [5| Theorem 3.2]) Let Xi,...,X,,
be independent zero mean random matrices of dimension di X do. Suppose pi =

max{||E[X,XF]|| , [|EXTX]||} and | Xy|| < M almost surely for every k. Then, for any T > 0,

ix >7| <@ +d)ep< /2 >
7| < X = .
1 * S Yo Pi+ MT/3

)

Pr

We omit the proof of the non-commutative Bernstein inequality. For details, readers may re-
fer to [5, Appendix A] and [I]]. Furthermore, the righthand side is always less than (d; +
da)exp(—272 /(3 4L, p2)) when 7 < L3 | p2. In our proof, we will solely rely on the con-

densed version of non-commutative Bernstein inequality.

We are now ready to state the proof of Theorem [I] First, in the following theorem, we show that
if there exists a “dual certificate”, the solution to convex program Eq. (I) is unique and exactly
recovers the pairwise interaction tensor.



Theorem 4. Let r = max{ry,ra,r3}. Let W = diag(Us V%, UpVE, UcVE) be a block diago-
nal matrix. Suppose that there exists a “dual certificate” F € range(R¢) such that

T 1
[Pr(E) = Wilp <[5 [Pre ()] < 5

5 H7’TL >\ 2me ||7’T e

holds for any E € ker(Rq). Then, the A, B, C is the unique minimizing solution of Eq. (1).

And also suppose that

Proof. Let M = diag (y/n3A, \/n1B, \/n2C) be a block diagonal matrix. By the definition of
nuclear norm, we have |[M||, = /n3[|A||, + /n1 [|B|, + /72 |C||,. Now, consider for any
block diagonal matrix E = diag(E 4, Ep, E¢) such that E € ker(Rq). Pick U 4. and V 4. such
that [U 4, U4 ] and [V 4,V 4] are unitary matrices and <UALV£L,PTj (EA)> = HPTj (E)

Also pick Up:, V., Ugs, Veu similarly. Let W, = diag(U . VL, Up. VE, U VL ).
We have W, € T+ and (W 1, Pr.(E)) = | Pr.(E)||,. Also note the fact that (F, E) = 0 since
F € range(RY) and E € ker(Rq). Then it follows that,

IM+E||, > (W+ W, ,M+E)
= [IM], + (W + W _,E)

= M|, +W+W_ —-FE)

= M|, + <W+WL —F,Pr(E) + Pr.(E) + Pgi(E))

= [M]l, + (W = Pr(F), Pr(E)) + (WL — Pr.(F), Pr.(E))

= [M]l, = (Pr(F) = W, Pr(E)) + (Wi, Pr.(E)) — (Pr.(F), Pr. (E))
(

> [IM]], — |7’T F) = W [Pr(E)llp + [Pr B, — [[Pro (F) [ [[Pr- (E)],

> M|, =4 /5~ HPT e+ HPTJ-( ).

> [IM], = v/n3 IIAII*+\/ IIBH*+\ﬁIICH*,

where the first inequality follows from the variational characterization of nuclear norm
M +E|, = supjqj=1 (Q: M+ E). We have also used the fact that E € S and therefore

Pg.(E) = 0. Therefore, if there exists any X, Y, Z obeying Rq(diag(y/n3(X — A), /n1(Y —
B),/n2(Z — C)) = 0, or equivalently \/% n3(Xi; — Aij) + V%«/nl()/}k — Bji) +
\/%‘/ng(ZM — Cki) = 0 for all (4,5,k) € Q, we would have | X||, + [[YI, + |Z], >
|A], + 1B, + [IC|l,. In other words, if X, Y, Z statisifes X;; + Y + Zx; = Aij + Bjr + Chi
for any (4, j, k) € €, the weighted sum of the nuclear norm of X, Y and Z would be strictly larger
than that of A, B and C. Therefore, A, B and C is the unique minimizer of program Eq. (I). O

Therefore, we remain to show that such a dual certificate F' exists with high probability. The proof
relies on a series of applications of noncommutative Bernstein inequality and the clever golfing
scheme proposed by [4]]. We begin with an elementary bound on ||Pr(cabe)|| -

Proposition 2. Suppose that A, B, C are (ug, pu1)-incoherent. Then, for any (a,b,c) € [n1] X
[na] X [n3], the length of orthogonal projection of o 4p. onto space T is bounded by

2 _ 28por
<
[ Pr (UabC)HF = ng
where ogpe 2 T 6((1’2 \}6&?) \}5&? .
Proof. By definition, we have |Pr (Uabp)”; = L — [|Pr, (6 ab)”p 7,11 ||77TB(51,0)||§, +

L = | Pre (6ca) I 7. Therefore, it suffices to bound these terms individually.



We first deal with || Pr,, (0sc)|| . It can be decomposed as
1Pz (Boe) |7 = (P (S5, P (G5c)
= <PTB (5170)7 6bc>
= ||PUB7DSB (650)”% + ||7DSB (6bC)PVB Hi‘ - HPUBPSB (6bC)PVB ||§7'
< 1Py Psy (00l + 11Pss (Buc) P I

Now it suffices to bound both terms ||Py, Ps,, (51,6)”% and || Ps, (0pc) Py ||; We have
1
Pu,Psp(0be) = Puydpe — —Pu, 1176, = Py boe,
3

where the second equality holds since B € Sp and therefore Py, 1 = 0. Combining with the
incoherence property A0, we have

2 2 2 HoT
||PUBPSB(6bC)||F = HPUB(SbCHF = ||PUBeb||F < 72

Next, we need to bound || Ps,, (6c) Py, || . We have

2

1
1Pss (06e)Pvs |7 = ||06c Py — ;211T5bcPVB

F

2
< 2[00 Py 7+ 5 [ 11700 Ps |
2

2
=2[[Proecl + 5 [[1el Py I

E (S7% eCTPVB
b/

2

2 2

=2[[Pyyeclf + = [InaPraec}
2

2
2
2
=2Pyecly +
ny .

2
= 4[[Pysecllp

< 4por
n3

)

where the first inequality is the Cauchy-Schwartz inequality and the final inequality is due to inco-
herence property A0. Therefore,

2 _ por | 4por _ Spor
|Prs (Gbe) |7 < g +—=

ns N9

In addition, we can bound ||Pr (6cq)||  using the same method.

It remains to bound ||Pr, (3ap) || % which is no greater than [Py, Ps, (6ap) |5 + | Pss (9at) Py, || 7
following a similar analysis. Again, we start with bounding ||Py, Ps, (das) H% We have

2
[Pu, P, (6a) |7 = \

1 1
PUA(Sab — nflPUA 1617; + @PUA]_]_T

F

3 3
S 3 HPUAéab”?:v + ? HPUAle{Hi‘ + nT HPUA]']'TH2F
1 1

n3
2 2
2 3 3
:3HPUAea||F+—2 ZPUAea, —|—72 3 ZPUAea’
nl ’ n1n2 N
a F a’b F

3 2 3 2
<3Py.e. + = Py, ey —_— Py, ey
<3Pl + 7 S IPvaewll + 5 IPuseo

Yuor

)

ni

<




where we have repeatedly applied Cauchy-Schwartz inequality and assumption Al. We can also
bound || Ps, (645)Pv, || using the same method as
QM(]’I’

||PSA (5ab)PVA||i" < .
na

Therefore, we have

Yuor  9uoer _ 18uor
Pr, (6ap) 1% < < .
[Pr (0o [ < 007 4 =20 < =F

Finally, combining the above inequalities, we have

2607

1 1 1
1Pr(@ase) s = — IPra (Gan) [ + — 1Pz (Goe) Iz + — Pre (Bea) [ <
3 ni n9

18uor = duer  dugr
<M0+N0+No

nin9

T oning ning  NiN2
28 or

_ 28por
ning

O

The next proposition shows that, in expectation, =272 R ¢, R, is an isometric operator on .S. There-
fore, the observation operator R, can be regarded as an orthogonal projection operator in expecta-
tion on subspace S.

Proposition 3. Suppose ) is a set of entries of size m which is sampled independent and uniformly
with replacement. Then for any block diagonal matrix E = diag (Ea,Ep,E¢) satisfying that
E € S, denoting O(E) £ M2 E[R:Rq(E)], we have

Ps(O(E)) = E.
Proof. We can calculate O(E) as follows,

O(E) = Z <E, Uabc> Oabe

abce
1 1 1 1 1 1
-3 (o (G« i+ i ))] (Gt + i+ 75)
— (EA + \/%1,“12313{3 + \/711?”3%1”3152,
Ep + W%LLQQE(T; + w%Eﬁlmlfg,,
Ec + \/7117131”31,{2E£ + \/%Eglnzlfl)

1 1 1
Es+——1,,1] EL,Eg + ——1,,17 E[
(Bt Gt R B+ U

where the third equality follows since 17 Ep = 0}, and 1] Ec = 07 .

1
El1,, 1;1;37EC + \/ﬁlng 1£2E£> )

Now, by the definition of 54 and S, since 11 EL1,,, = 0, wehave 1,,17 E7 € Sy and therefore

Psa(1n, 1. EL) = 04, xn,. We also have Py, (1,17 EL) = 0y, n, and Py, (1,17 EY) =
01, xn, - In addition, we have EX1,, 17 € S# and hence Ps, (EL1,,17 ) = 0, xn,. Combining
these facts, we have

Ps(O(E)) = E.
O

Next, we show that, with high probability, RS R is very close to an isometry on subspace 71" if the
number of observations || is sufficient by appealing to the non-commutative Bernstein inequality.



Lemma 2. Suppose ) is a set of entries of size m which is sampled independently and uniformly
from [n1] x [na] x [ns] with replacement. Then for all > 1,

PTH < \/1610#07““3510%(”3)
3am

ninans

PrRGRaPr —

ningng
with probability at least 1 — 2n§_26 ifm > 4478/110’1“77/36 log(ns).
Proof. By Proposition[3] for any E € T', we have

E [PrRERaPr] = PrE[RGRa] Pr

=Pr ( i o) Pr
ningng

=" _pr.

ninans

Now we use noncommunicative Bernstein inequality to bound the deviation of the operator

PrRERaPr from its expected value #W.PT in spectral norm.

Consider any block diagonal matrix E = diag(E 4, Eg, E¢), we can decompose PrRERaPr(E)
as follows,

NE

,PTR?ZRQ,PT(E) = <PT(E)’ Uakbkck> Pr (Uakbkck)

k

Il
_

I
NE

<E7 PT(Uakbka)> PT(Uakbka)

k=1
Define the operator 74, which maps E to (E,Pr(casc)) Pr(cas.). Clearly, we have
PrRERAPr = D pey Tapbrer a0d E[74,5,0] = WPT' We can bound the operator norm
(| 7abe|| using Proposition[3]as follows
[Tabell = sup |[Tape(E)||

e

HfPT(UabC)Hf17

< 28uor

onng

1 287 1 28uor
< max , < )
ningnsg ning nNingns ning

where we have utilized the fact that || A — B|| < max{||A||, |BJ|} for positive semidefinite matrices
A and B. We also have

Now we can compute the bound,

Pr

Tak brer —

2
B2 el = B [IPr@asina I Tarsees] |
28uor
< N1y ||]E[Takbkck]||
_ 28uor
~ n?ning’
Therefore,
2
1 9 1
E (Takbkck - n1n2n3pT> ‘ = HE[Takbka] - n%n%n%’PT
9 1
< max HE[Takbka] |’ 2n2n§
28uor 1
< MO WZnZny wndnd
inang Ninang
28upr
- n%n%ng,



The lemma follows by applying the noncommuntative Bernstein inequality. O

The next lemma asserts that, for a fixed matrix E, R§Ra(E) is close to O(E) in spectral norm.
Lemma 3. Suppose () is a set of entries of size m which is sampled independent and uniformly with
replacement. Then, for any 8 > 1 and any E € S,

72nan3 log(ny + ne + ng)
m

ningng

|22 0l -] <

1El »
holds with probability at least 1 — 2(ny +no +n3)*~? provided that m > %8&12 log(ny +mng+ng3).

Proof. Define the operator 7,5 which maps E to ninans (E, 0ape) 0ape- We can decompose
e PsRERa(E) — Eas

ningng

. 1
PsRQRQ —E= E Z (PS'Yakbkck (E) - E)

k

We can bound || Ps¥a,byc, (E)| as,

||PS’yakbka(E)|| < ||’yakbkck(E)||
= n1nang H <E7 oakbkck> Oabycy ”
< 3nans ||E|

Therefore, we have

7
IPsVarbrer (B) = Ell < [Psvapstne, (B)[HIEI < 3nans [|El| o +n3 [OE)| < Snans [El

oo —

where we used the fact that |E| < n3||E|| and n ||E| < 3nons||E|| for no > 2. We also
have

HE [(Psryakbkck (E))* (,PS’yakbka (E))] H

IN

IE [Qarbrcr (B))" Qartrcr (E))] |

— 2.2 2 2 %
= ||E {n1n2n3 <E7Uakbkck> Oakbkckaakbkck}

2 %
= n1n2n3§ <Eaaabc> O abcOabe

abe

< ||9n2ns Z ”E”io O abeTabe

abc
D8 D8+ 8

ab be

= 9nong ||E||c2>o

< 9nonj |B|1%,
‘We now obtain,
||IE [(Psryakbkck (E) - E)* (PS'Yakbka (E) - E)] ||

< max {HE[(PS'Yakbka (E))* (,PS’Yakbka (E))] H ) HE*E”}
< 9nang||BI
Then the lemma follows by the noncommunative Bernstein Inequality. O

The next concentration result is the final piece for constructing the dual certificate.
Lemma 4. Suppose 2 is a set of entries of size m sampled independently with replacement. Then
forany E € T and any 8 > 2, we have

H n1N2N3 8646 uprns log ng
m

PrRERo(E) — EH < \/ 1E[

with probability at least 1 — 6n§_ﬁ if m > 508uornglog(ns).



Proof. Without loss of generality, for each a, b, we define the random variable
XabA) = <§{(1’2)7 ningns <E, Ua/b’c’> PT(Ua/b/c/) - E> s
where o/, b, ¢’ is sampled uniformly random from [n1] X [no] X [n3]. We also define x;.(z) and x4 (¢
similarly. We now bound each of x,;c4), X33 and X (o) using standard Berstein inequality. By
definition, we have E[x ;4] = 0 and
|Xab(A) | § <5{5}?), ningnsg <E, O’a/b/c/> PT(Ua’b/c/)> ’ —+ ’<5é?), E> ’
= minans | (B, owver)| [ (35, Pr(ouve) )| + [ (65 B))|
A
< 3ymnans Bl [P I1Proave)lly + Bl
S 90”3U0T ||E||oc

Now we can also bound E[x?, ,,] as follows,
1

ninang

2
EDCy] = Z <5£’:),n1n2n3 (E,00p ¢ Pr(0atrer)) — E>

a’b’ ¢!

= oy 3 Baowe) (8. Priowe)) — (B.6G))

a’b’c’

<mm 3 B (5 Pr))

a’b’c’

2
< Onamans [BI%, 3 (85 Priows))
a’b’

2
< 9mnans I [ Pro5))|

< 1620703 | E||2 -

Clearly the entry <(5((1?), mmnaPrRERo(E) — E> is the mean value of m i.i.d copies of x ;4).
Apply the Bernstein’s Inequality, we have

4 I
Pr ‘<5(?)7 n1n2n3PTR5RQ(E) —E>‘ < \/86 Bpornslog(ns) Bl | < 2n3_B.
a m m oo
By union bound, we have
864 1 _
Pr lH”“;j"?’PTRgRQ(E) . EHOO > \/ B“OTZ;* og(13) B | <6n2".

O

Finally, we adapt the “golfling scheme” proposed by [4] to construct the dual certificate F.
Lemma 5. Suppose $Q is a set of entries of size sample independently with replacement for m >

3600 max{ 2, juo }rnsBlog? (6ns). There exists F € range(R¢,) satisfies

T 1
[Pr(F) = W < \ 2y IPre(E) < 3,

with probability at least 1 — 3log(6n3)(3n3)2~ P for all B > 2.

Proof. Partition m entries of € into p partitions of size ¢, where
q > 3600 max{ g, 13 yrnzBlog(6nz), p > log(6ns).
Denote €2; be the j th partition. By Lemma|2| and union bound, we have

ninan
Pr[lzs q
q

ninans

PrRé, Ra,Pr —

1 _
PTH < foralljefp]| >1- log(6n3)2ns 2.

10



Now suppose the above event happens. Define Fy = 0, Go = W and
ninang

F;=F;1+ Ro, \Ra, 1 (Gj-1),Gj = W —Pr(F;)

for j € [p]. We can now bound ||G;|| . as follows,

1G]l = W = Pr(F))ll

ninan )
= HW—PT(Fjl)— 2EPrRy, Ra,, (Gyot)
F
ninoaMn,
= HGj—l 22 PrRE,  Ra,, (Gjo1)
F
1
< 5 1Gj-1llp -

It follows that |G|, < 277 ||Go||z = 27PV3r < 51—, since p > log(2n3) > log, v/2n3. Now
choose F = F, it is easy to check that

-
[Pr(F) = W]z <4/ 25

with at least probability 1 — 1og(6n3)2n§_ﬂ .

We now argue that F,, also satisfies the second inequality in this lemma with high probability. Apply
Lemma3]and Lemma[d] we have

n1NaNn, «
%PSRQJRQJ(Gj,l) -G,

il

By union bound, the above random events holds for all 7 = 1,...,p with probability at least 1 —
2log(6n3)(3n3)! . Suppose these random event happens, we can bound Py (F,) as follows.

ningns

IPTL (qpsRajRQ_j(Gj_l) — Gj—l) H

Pr <

\/72n1n§ﬁ log(ny + ng + n3)
q

ningng

Gj—l — ,PTRFZJ»RQJ' (Gj—l)

1 _
EEICRINETE o

ninans

NE

[Prs (Fyp)l < PriRo,Ra, (Gj-1)

<.
Il
—

I
M=

.
I
—

ningns

NE

PsRq,Ra, (Gj-1) — Gj1

.
I
—

M=

1Gj-1llo

/ \/72n2n§ﬂ log(n1 + ng + n3)
q

.
Il
-

|
e

_. [ T2nan2Blog(ny + ng + n3)
2 J\/ 2 Wl

q

1

288u2rn3 3 log(3ns)
q

AN
HQQ

<

bl

N

where the second equality holds because Pr.(Gj_1) = O for all j and the last inequality follows
since ¢ > 3600u3rn33log(6n3). Finally, by union bound, the probability that all above random
events happen is at least 1 — 3log(6n3)(3n3)>~~. O

11

1G;-1llo | = 1-2(ny+na+ns3)t =7,



Remark 1. By golfing scheme construction, the dual certificate F can be decomposed by

p
N1M2N3 4
F=>)" R&, Ra, (Gy),
i1 1
for some G, ..., G,
We will use this property later for proving the stable recovery result in the presence of noise.

The next lemma is an elementary Chernoff bound which shows that maximum duplication of any
entry in 2 when sampling with replacement is bounded by §31log(n1). This gives us the upper
bound of the spectral norm of Rg.

Lemma 6. Suppose 2 is a set of entries of size sample independently with replacement for m >
3600 max{ 2, juo }rnsBlog? (6ns). We have
88 log(n

[Ral < 2210807)

forng > 1 and B > 1 with probability at least 1 — 3n2 28,

Proof. Given a set of entries Q = {(ak, b, ¢k) } ke[m) sampled uniformly with replacement, denote

the number of reptitions as 7' b = |{klax = a,bp = b}|, n(B) {k|br = b,er, = c}| and
©) _kler —
nea’ = [{klex = ¢,ar, = a}|.
Rall = sup [[Ra(E)lg
IEllp=1
m 2
P, 58 (@)
e Ly [S(ma o o)
1Bl =1 \ ]; Kbk kCk kTk
g— sup 4|3 < ,5((1Ag> + < §,§B)> + < 5£C¢2>
T [ ) (B g (B

3

S (5 A2 0+ T (B0 0+ S (59 ]
ab be

(4) (B)

C
3 max{maxm,,’, maxmn,, ,max nga ) }.
ab be ca

1
= —— sup
VI B =1

1
Vi
Therefore, it suffices to bound the maximum number of repetitions of any entry in £2. To this end, we

can apply Chernoff bound for the Bernoulli distribution. The probability of an entry a, b be sampled
for more than ¢ times can be bounded by Chernoff bound.

—5Blog(n1)

Pr [néf) > §mog<nl>] < <§ﬂlog(m)) exp (iﬂlog(n1)> <ny?,

when n1 > 9. We can also bound nl(mB) and né? similarly. By union bound, we have

8
max{magx 77((1'2) , max 771ch) ,maxn(S} < gﬁ log(n)
a C ca

hold with probability at least 1 — 3n§_25 by union bound. O

Finally, to apply Theorem [} we require the following bound relating ||Pr. (E)|, and ||Pr(E)]|
for any fixed matrix E € ker(Rgq).

Lemma 7. Suppose ( is a set of entries of size sample independently with replacement for m >
3600 max{ 7, uo}rngﬁlog2(2n3) Then, for any E € ker(Rgq), we have

5 ||7’TL <\ 2 ||7’T e

with probability at least 1 — 3n3_

12



Proof. Since E € ker(Rg), we have

0=[Ra(E)lr = IRaPr(E)| s — [RoPr (E)| 5

Apply Lemma 2]
ningng

PTR;} RoPr —

PTH <1 ©)

ninang 2

holds with probability at least 1 — Sn?ﬁ . Suppose Eq. (9) holds, we can bound [|[RoPr(E)| . as
follows

IRaPr(E)|7 = (RoPr(E), RoPr(E))
= (E,PrRoRaPr(E))

m
1P (E)|[7 -

Y

2n1n2n3
On the other hand, we need to bound ||RqoPr.(E)| . Suppose [|[Ra| < %gl("?’) <

1/ % log(ns) which holds with probability at least 1 — ng_ﬁ by LemmaH we have
RaPre(E)|p < [Rall[Pr(E)ll £

8
<\ L rog(ns) [Pr (B) -
1

[Pre (B = [[Pre (B

Therefore,

nq
W() RaPrs(BE)| 5

ni

881log?(n3)
z\/ o |Pr(E)|,

8711 %) ngﬂ log (Tl3)

IRoPr(E)|| ¢

[Pr(E)|

o 3600n3n1 7108 log? (6n3)
- 8ninans 3 log? (6m)

2r
- Pr(E)| 5 -

We are now ready to prove the exact recovery result Theorem I}

Proof. (Theorem 1) By Lemma there exists F' € range(R¢,) such that

r 1
[Pr(E) = Wil <[5 [Pre(E)] < 5,

with probability at least 1 — 31og(6n3)(3n3)2~# for all 3 > 2.
On the other hand, Lemmal shows that for any E € ker(Rq),

5 ”PTi >\ 3e ||7’T e

holds with probability at least 1 — 3n37

By union bound, the above random events happen simultaneously with probability at least 1 —

31log(6n3)(3n3)2~" — 3n2~". Finally, in the case that both random events holds, by Theorem.
the solution to Eq. (I) is unique and exactly recovers A, B, C and therefore the pairwise interaction
tensor 7 = Pair(A, B, C). O

13



3 Proof of Theorem 2

In this section, we generalize the proof of Theorem [2|for the noisy cases.

Proof. (Theorem 2) First, define operator @ = 72R#Rq, where v = ||Rq| ™", as the normalized
version of RE,Rg. Clearly, we have || Q|| = 1. By Lemmaﬁ we can bound «y by v >, /Sﬁk)nigl(ng)'

We can decompose the optimal solution M of the convex progam Eq. (@) into the sum of the true

matrix M and the error matrix E, namely, M=M+E. To prove the theorem, we need to bound
the error term E in its nuclear norm ||E||,. To do this, we start with bounding || Q(E)|| . Denote
the noisy observations as an m-dimensional vector y, where y; = T},5,.,. We have

19E) < [|Q¥1) —*Rax(y)| + [1*Rir(y) — QM)

= 7? |RaRaD) — Ri(y) | + 72 IRA) — RaRa(M)]|
< 2Rl [Ra®D) — y||_++2 IRal Iy ~ RVl
< ver + yes £ 6. (10)

In the last inequality, the first term HRg(M) — yH is no greater than e due to constraint of opti-
F

mization problem and the second term ||y — Rq(M)|| < € is the assumption on the observation
noise.

On the other hand, we can bound || Q(E)|| » by following
1QE)p = 1QPT(E)|lp — [QPr- (E)ll£ -

For the second term, we have ||QPr. (E)||z < ||[P7+(E)| z. Now, we focus on the first term, we
have

QP (E)|lp = 7* [[RGRaPT(E)||
> ~? ||7’TR?1RQ7’T( e

H n1M2Mn3 PrRoRaoPr(E) HF

> 2
n1n2n3

>+ [HPT( e |

n1NoNg
[||PT<E>||F -

2 m
L Pr®)

ninsng 2

ningns

PrRRaPr(E) - Pr(B)| |

ninang

> PrR4RaPr — Pr| IPHE)]

nlngn
> m
F = 1681log(ns)nans

>5°

IPr(E)

Therefore, we have
m

E >
HQ( )HF = 16[3712713 IOg(’ﬂg)
Now, combine Eq. (I0) and Eq. (IT)), we have

16 1
Pr(m)), < 200ra o8] 5+ Pr-(B)].).

Next, we proceed to bound ||P7. (E)||,. We can use a similar subgradient argument as in the proof
of Theorem@ Let F € range(R§) be the dual certificate as described in Theorem we have

i = <.
= M|, +W+W_ —-F,E)+ (FE)
= M|, + (W = Pr(F),Pr(E)) + (WL — Pro(F),Pr.(E)) + (F,E)

Yo IPr(B)l + 5 [Py (B + (F.B).

1PrE)lp = Pr(E)]p- (11)

S+ |[Pre(E)|p) < lﬁ,ﬁ%log(ng) (

> [IM[, =

14



Recall that M is the optimal solution to the convex program Eq. (3), we have HMH < ||M],.
Hence, we have

31Pr(B)l. < Y5 Pr(E) - — (F.B).

Now we bound (F, E). By the golfling scheme construction of F in Lemma. [5| we have
P

<F7 E> = Z <R61RQL (Gi)7 E>
=Y (G, R4, R, (E))

i=1

p
> =Y [1Gillp [Re,Ra, (B)]| - -

i=1
For each 4, we can bound ||R51RQ (E) HF by

[R6, Re, (B)|| . = || R, Reo, VD) = Riy, (3,)

|+ IR, (o) = Ry R (M)

IN

a,e
Y Y
where yq, is the restriction of y on €2;.

*
F+ ||R91

)

Therefore, we have
€1+ € P
(F.E) > ———=23 |G,
i=1

2(61 + €3

)
> - 1Goll

_2Aate) W] ,Mm
B! = v

Consequently, for reasonable values of parameters, we have

1 r 2(e1 + €
L 1P @ < G IPe®), + 2D v
3
168 log(ng)+\/r 2(e1 + €
< 1OP1BT (5 . ). + 29D T
1 €1 + €2
< — +(E .
< 0+ [Pr(B)],) + E

Hence, we have

16
IPre@®)], < = <5+ El;f) < 36.

Last, combining the above inequalities and setting € = €; + €2, we can finally bound the error E in
terms of its nuclear norm as follows

IEll, <V2r |Pr(E)lp + IPr (B,
< V2rnad + (V2rng + 1) | Pre (B,
< V2rngye + 3(V2rny 4 1)ye
< 5\/?71276

2rnin3
< By ———¢.
~ | 8Blog(n1)

15



4 Proof of Proposition 1

We first review some terminologies. We call a matrix A a doubly centered matrix, if each column
and each row of A sums up to zero, i.e. 17 A = 07 and A1 = 0 hold simultaenously. We also call
a vector v a centered vector, if the sum of its entries equals to zero, namely, 1Tv = 0.

Lemma 8. Given an arbitrary pariwise interaction tensor T = Pair(A, B, C), there exists a unique
7-tuple (A, B®, CY a, b, c,d) such that A°, B°, C° are doubly centered matrices, a, b, c are cen-
tered vectors and satisfies

Tijk = AY; + Bl + Ci + a; + bj + e +d,  forall (i,j, k) € [n1] % [na] x [n3].  (12)

Remark 2. We can interpret the quantities a, b, c,d in Lemma|S| as axis-aligned biases of tensor
T. For example, every entries of the form T, are influenced by bias a.; the entries of form Ty,
for all (i, k) are biased by by; the entries of form T, for all (i, j) are biased by c1. In addition, all
entries of T is biased by d.

Proof. (Lemmal8)) In the following, we shall prove the existence and uniqueness separately.

Existence. Given any A,B and C of appropriate size, we now construct the 7-tuple
(A%, B% C° a,b,c,d) specified in the lemma.

We define the mean values of matrices A,B and C by 04 = L 1TA1, o = —+-17B1

ning nansg

and o = ﬁlTBl. We also denote the mean vectors of columns of matrices A, B and C by
1

a, = KATL b, = iBTl and c, = %CTl. Similarly, we denote the mean vectors of rows of

matrices A, B and C by a,, = %Al, b, = LBlandc, = L C1.
2 ns n1
Now, we construct the desired 7-tuple (A%, BY, C°, a, b, c,d) by
AY = Aij —a§ —aj 404, B, =Bjr — b5 —bp+op, CRi=Cri—¢ —cf+oc
ai:a;—i—cf—aa—am bj:b§+a§_0b_0a, Ck:Cng+blcg_Jc_Ub

d=o04+ 0p+ 0c,

where (4, j, k) ranges within [n1] x [ng] x [n3]. Itis easy to verify that A, B® C° are doubly
centered matrices and a, b, ¢ are centered vectors and that A;; + Bjx + Cri = AJ; + B?k +CP. +
a; +bj +cp +d.

Uniqueness. Suppose there exists two 7-tuples (A9,BY,C{,a;,bi,ci,d;) and
(AY,BY, CY,as,bs,co,dy) that satisfy the centering property specified in the lemma. Con-
sider their differences (A%, B, C% a,b,c,d) = (A — A9, B — BJ,CY — CY,a; — az,b; —
by, ¢y — co,d; — ds). Clearly, we remain to show that (A°, B°, C°, a, b, c, d) are zeros.

Itis clear A°, B?, CY are doubly centered matrices and a, b, c are centered vectors. In addition, the
following holds for all (3, j, k)

0=A),+ B, + Cpi +ai +bj +cr + d. (13)
We first show d = 0. We can see this by summing over all ¢, j, k on both sides of Eq. (T3),

0= Z[A?j + B 4 CRi + ai + bj + ¢, + d] = ninanad,
ik

where the first inequality holds by the centering properties on A°, B, C°, a, b, c.

Next, we show that a = 0. This can be done by summing over all (j, k) € [na] X [n3] on both sides
of Eq. (T3) and for any 1,

0="> [AY + BY% + Ci + ai + b + cx + d]
jk
= Z[A?] + B?k + Cgl +a; + b + ¢
jk

= N2Nn3a;,

16



where we have used the result that d = 0 and the centering properties. Similarly, we can show
b=0andc=0.

Finally, we remain to show A = 0. Again, fix any ¢, 7 and sum over all k € [n3], we have

0= [A}; + Bjy + C; + ai + b + ¢ + d] = ngAY;,
k

where we have used the facts that a; = b; = ¢, = d = 0. We can prove B = 0 and C = 0 using
similar arguments. O

Lemma [§| essentially states that the representation of a pairwise interaction tensor is unique if one
separate out these bias components. We can immmediately obtain Proposition [I|by condensing the
unique representation scheme (A%, B, C° a, b, c, d) for pairwise interaction tensors identified by
Lemma In particular, we construct A’ € S4,B’ € Sp,C’ € Sc by setting A}, = A?j +
a; +d, B = B?k + bj and C}; = C}; + ¢ By the centering property of A°, BY, C° and
a, b, c, it is clear that each column of A’ sums up to a same value (n,d) and each column of B’, C’
sums up to zero. Hence A’, B’, C’ satisfy the constraints defined by S 4, Sp, Sc respectively. We
can also easily show the uniqueness of A’, B’, C’ under this constraints using the uniqueness of
(A07 BOa CO7 a, b7 C, d)

Proof. (Propostion 1) The existence follows immediately from Lemma 8] Specifically, we can set
Al =AY +ai+d, B, = BY, +bj and Cy,; = C}; + ci.. We can easily verify that A’ € S4, B’ €
Spand C’ € Sc.

Now we prove the uniqueness. Suppose that we have Pair(A;,B;,C;) = Pair(A3, Bo, Cy),
where A € Sy, Ay € S4,B1 € Sg,By € S, C1 € Sgand Cy € Si. Denote A = Ay — Ao,
B =B; — By and C = C; — C,, we remain to show that the differences A,B and C are zero.

Note that A € S4,B € Sp,C € Sc. We can construct 7-tuple (A%, B, C° a, b, c,d) similarly

to the proof of Lemma ﬁ We define the mean values of matrix A by 04 = n11n2 17 A1 (note that

the mean value of B and C is zero). We denote the mean vectors of rows of matrices A, B and C
by a, = nizAl, b, = %Bl and ¢, = n%Cl.

Now, we construct the desired 7-tuple (A%, B®, C% a, b, c,d) by
AY = Ajj —a] + 04, B} =Bjr—b, Cp=Cri—ch,
a; = a; — oq,

where (i, 7, k) ranges within [n1] x [n2] x [ns3]. In addition, we set b = b,.,c = ¢, and d = o,.
We can verify that A?j + B;-)k + C,gi +a;+bj+cp+d=A;; + Bjr + Cy = 0. By Lemma it
follows immediately that (AY, B, C° a, b, ¢, d) are zeros. Therefore, we have A = 0, B = 0 and
CcC=0.

O

S Details of recovery algorithm
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Algorithm 1 Exact Recovery of Pairwise Interaction Tensor

1: procedure EXACTRECOVER(Y = {a;bici}icim]» PalT) = {Taibic: Yic[m)> T> 0, €)

2:

3
4:
5:
6.
7
8

9:
10:
11:
12:
13:

14:

y+ 0

for k = 1,..., kmax do
[X, 74] 4 shrinka (P, (v),7,74)
[Y,rp] < shrinkp(Pg _ (¥), 7, 75)
[Z,r¢] < shrinkg(Pg,, (y),7,rc) > shrink is algorithmically identical to shrink .
e « Po(T) — Po(Pair(ng /*X, ny/?Y, ny /*Z)
if |le||z / |[Pa(T)| p < € then
break
end if
y <y +de
end for

end procedure
return [ngl/zX, nfl/QY, ngl/QZ]

Algorithm 2 Stable Recovery of Pairwise Interaction Tensor

9:

10:
11:
12:
13:
14:
15:

16:
17:

1:
2
3
4
5:
6.
7
8

procedure STABLERECOVER(Y = {a;bic; }ic[m], Pal T)=A{Tu.p,e, Yieim] 75 0, €, €1)
y<+<0
s+ 0
fork=1,..., kyax do
[X,TA] “— shrinkA( (y) T, TA)
[Y TB] — shrinkB( (y) T, TB)
[Z,rc] shrka( ( ), Ty rC)
e < Pq(T) — Po(Pair(ng J1Px VT Ty Mg 1/QZ)
1f||e||F/H7)Q HF ¢ then
break
end if
y <y +de
s+ s — e
[Y7 5] < PIC(yv 8)
end for

end procedure
return [n, 12x n, Py nil/QZ]

Algorithm 3 Shrinkage operator

1
2
3
4
5:
6.
7
8

9:
10:
11:
12:
13:
14:
15:
16:

: procedure SHRINK (X, 7, 7)

s<—r+1
repeat
[U, ¥, V] « svd(center(X), s) > svd(M, s): return top s singular vectors of M
§4s+5H
untilo,_5 <7
T max{j o; >T}
X Zz 1(of — 1w ;
return [X, ]
end procedure
procedure SHRINK A(X7 )
[X, 7] + shrinkp (X, 7, 7)
d sum(X) > sum(X): elemetwise sum of matrix X
Ve mm{d T+ {0+ 7o)
return [X +~117 7]
end procedure

18
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